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Insect Sprays – Analysis of Variance

For this ANOVA tutorial, we will use the InsectSprays1 dataset provided in R, which gives
the results of an experiment that examined the effects of six types of insecticide spray on the
numbers of insects.

Load and look at the data

Load and examine the dataset.

data(InsectSprays)
str(InsectSprays)

'data.frame': 72 obs. of 2 variables:
$ count: num 10 7 20 14 14 12 10 23 17 20 ...
$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

head(InsectSprays)

count spray
1 10 A
2 7 A
3 20 A
4 14 A
5 14 A
6 12 A

You can read a bit about it here: help(InsectSprays).

There are two variables. count is the response variable and represents the number of insects
found in a plot, and spray is the predictor variable which indicates the type of insecticide

1Data originally sourced from Beall, G. 1942. The transformation of data from entomological field experiments.
Biometrika 32:243.
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used. Modelling a quantitative response variable with a categorical factor should make you
immediately think of ANOVA!

Let’s give the dataset a shorter name, so we don’t have to write out InsectSprays whenever
we want to use it.

IS = InsectSprays

Check the number of replicates (data points) for each group.

table(IS$spray)

A B C D E F
12 12 12 12 12 12

This shows that there are 12 replicates in each group. Because n is the same for each level,
we can say that this is a balanced design.

Plotting the data

Let’s plot the data using a boxplot.

IS |>
ggplot() +
aes(x = count, y = spray) +
geom_boxplot()
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What are your first impressions? Does it look like there is much difference among the groups?

Boxplots are useful, but for small datasets it can be revealing to plot the actual data.

We can use a dotplot with violins.

dvp <- IS |>
ggplot() +
aes(x = count, y = spray) +
geom_violin() +
geom_jitter(width = 0, height = 0.1, alpha = .5)

dvp
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Do you think the dot/violinplot is more or less informative than the boxplot?

Analysis of variance compares the variation among groups (group means from the overall
mean) with the variation within groups (data points from their group means). Recall that,
while useful, boxplots do not actually show us the means. So, to help with our visual impression
of these data in the context of ANOVA, we’ll now add the means to the dotplot.

meanIS <- IS |> group_by(spray) |> summarise(count = mean(count))

dvp +
geom_point(

data = meanIS,
colour = "darkorange" ,
shape = "|",
size = 8
)
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Though I do like boxplots, I think this is probably a more useful and revealing plot in this case,
especially since we’re about to do an ANOVA, which tests for differences among means.

Fitting an ANOVA model

An ANOVA model is fit in R using the function aov(). There is a function anova(), but this
instead can be used to produce an ANOVA table from an existing model.

Let’s do it.

aov(count ~ spray, data = IS)

Call:
aov(formula = count ~ spray, data = IS)

Terms:
spray Residuals

Sum of Squares 2668.833 1015.167
Deg. of Freedom 5 66

Residual standard error: 3.921902
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Estimated effects may be unbalanced

This shows the among-groups (spray) and within-groups (Residuals) sum of squares, and
degrees of freedom. The Residual standard error is the square root of the error variance
(𝜎2

𝜀). It is the expected (average) absolute deviation from the individual data points to their
respective group means. If required, you can remind yourself what these values represent from
the lecture slides.

We can get the full ANOVA table by commanding a summary() of an aov object. (Note, a
very similar output can be achieved by applying the anova() function to an aov object.)

aov(count ~ spray, data=IS) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
spray 5 2669 533.8 34.7 <2e-16 ***
Residuals 66 1015 15.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The full ANOVA table also gives us the Mean Squares (the SS divided by their respective df),
the F value (the ratio of the within-to-among-groups Mean Squares), and the P-value.

The null hypothesis tested here is that there is no difference between the group means in the
population.

𝐻0 ∶ 𝜇1 = 𝜇2 = ... = 𝜇𝑔

The alternative hypothesis is that at least one of the groups is different to the others.

Remember that we assume that we have taken a sample of data at random from a population.
The P-value is the proportion of equivalent samples in which we would obtain the observed
test statistic or greater if the null hypothesis is true (i.e. no difference among groups). In
other words, how likely is it that the observed differences among means have occurred just
through chance? Here, the F ratio is high and P-value is tiny (< 0.0000000000000002). So,
there is extremely strong evidence against the null hypothesis and we can conclude that there
is indeed a difference among the group means—plants subjected to different types of spray
have, on average, different numbers of insects on them.

This, in itself, is not immensely informative. Naturally, we wish to examine which groups
(spray types) are different from one another.

But, first, we need to examine our assumptions.
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Examining the assumptions of ANOVA

Like for regression, diagnostic plots are the first step for examining how well the assumptions
of ANOVA are met by our model. If these assumptions are not met, then the F-ratio might
not behave as it should (i.e. follow an F-distribution) with repeated sampling under a true
null hypothesis.

Those assumptions are:

1. Appropriateness of an additive linear model
2. Independent errors
3. Normally distributed errors
4. Homogeneity of errors

We will focus on 3 and 4 because 1 and 2 cannot really be checked at this stage of the analysis.

Let’s make the plots.

plot(aov(count ~ spray, data=IS))
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There is cause for concern here. As is often the case with counts, there seems to be some
heteroscedasticity in the residuals. That is, the residual variance does not appear constant,
but rather increases with the fitted value. In an ANOVA context, this means that the groups
with high means have greater within-group variation. Let’s have a look at the standard
deviations of the groups.

IS |> group_by(spray) |> summarise(sd = sd(count))

# A tibble: 6 x 2
spray sd
<fct> <dbl>

1 A 4.72
2 B 4.27
3 C 1.98
4 D 2.50
5 E 1.73
6 F 6.21

Indeed, there is a huge difference between the largest and smallest standard deviation (roughly
3.5-fold).
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We can use a Levene’s test to explicitly test for evidence of heterogeneous variances. The
function leveneTest() in the car package does this. Remember, the null hypothesis is that
the average absolute deviations are the same in all groups.

car::leveneTest(aov(count ~ spray, data=IS))

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 3.8214 0.004223 **
66

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The low P-value here indicates that the null hypothesis is rejected and our suspicions were
correct—there are significant differences in the variations among groups.

The assumption of normality also seems suspect here, according to the fact that many data do
not fall along the dotted line in the Q-Q plot. This is probably part of the same problem.

We can try transforming the response variable count and see if that helps.

ANOVA for transformed counts

We will try a log(x+1) transformation. We add the constant 1 because there are some (two)
zeros in the dataset.

table(IS$count)

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 26
2 6 4 8 4 7 3 3 1 3 3 2 4 4 2 2 4 1 2 2 1 1 1 2

Let’s test the assumption for the transformed data.

IS |>
mutate(

lcount = log(count+1)
) |>

aov(formula = lcount ~ spray) |>
car::leveneTest()
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Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 1.8821 0.1093
66

The test is now non-significant, but 0.1 is still a fairly small P-value. Looking at the following
boxplot, it seems like the log transformation might be too severe—the groups with smaller
means now seem to have higher variance than those with larger means.

IS |>
mutate(

lcount = log(count+1)
) |>

ggplot() +
aes(x = lcount, y = spray) |>
geom_boxplot()
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Now try instead a square-root transformation.

IS |>
mutate(
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sqrt_count = sqrt(count)
) |>

aov(formula = sqrt_count ~ spray) |>
car::leveneTest()

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 0.8836 0.4971
66

IS |>
mutate(
sqrt_count = sqrt(count)

) |>
ggplot() +
aes(x = sqrt_count, y = spray) |>
geom_boxplot()
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This looks like a better transformation for this model.
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Fitting an ANOVA to the transformed data

Fit the model.

IS <- IS |> mutate( sqrt_count = sqrt(count) )

aov(sqrt_count ~ spray, data=IS) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
spray 5 88.44 17.688 44.8 <2e-16 ***
Residuals 66 26.06 0.395
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now show up the diagnostic plots for this model.

aov(sqrt_count ~ spray, data=IS) |> plot()
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Much better!

This clearly has not made a substantial impact on the result of the hypothesis test for a
difference among group means, but we can be happier that the inference is correct.

Now let’s look at the differences among groups.

Post-hoc multiple comparisons

Tukey’s Honest Significant Differences (HSD) are a method of adjusting for the fact that, in a
post-hoc analysis such as this, there are simultaneously hypothesis tests being done. Across all
these tests, the probability of erroneously finding a significant difference (i.e. making a Type I
error) is greater than the nominated alpha value (usually 0.05). The HSD method makes each
individual test slightly more conservative so that the family-wise error rate across all tests is
conserved.

Tukey’s HSD can be implemented in R as follows.

aov(sqrt_count ~ spray, data=IS) |> TukeyHSD()

Tukey multiple comparisons of means
95% family-wise confidence level

17



Fit: aov(formula = sqrt_count ~ spray, data = IS)

$spray
diff lwr upr p adj

B-A 0.1159530 -0.6369601 0.8688661 0.9975245
C-A -2.5158217 -3.2687349 -1.7629086 0.0000000
D-A -1.5963245 -2.3492377 -0.8434114 0.0000006
E-A -1.9512174 -2.7041305 -1.1983042 0.0000000
F-A 0.2579388 -0.4949744 1.0108519 0.9144964
C-B -2.6317747 -3.3846879 -1.8788616 0.0000000
D-B -1.7122775 -2.4651907 -0.9593644 0.0000001
E-B -2.0671704 -2.8200835 -1.3142572 0.0000000
F-B 0.1419858 -0.6109274 0.8948989 0.9935788
D-C 0.9194972 0.1665841 1.6724103 0.0080813
E-C 0.5646043 -0.1883088 1.3175175 0.2512638
F-C 2.7737605 2.0208474 3.5266736 0.0000000
E-D -0.3548928 -1.1078060 0.3980203 0.7366389
F-D 1.8542633 1.1013502 2.6071764 0.0000000
F-E 2.2091561 1.4562430 2.9620693 0.0000000

This table above has each possible pairwise comparison of groups. The number of comparisons
is 𝑔(𝑔–1)/2 = 15 (where 𝑔 = the number of groups = 6).

For each pairwise comparison, the table gives the estimated difference (diff), the lower (lwr)
and upper (upr) confidence intervals and the p-value (p adj) which tests whether the difference
is statistically significant. The confidence intervals and the p-value are adjusted for the fact
that multiple simultaneous comparisons are being made, and so are more conservative than if
they were done separately. Out of the 15 comparisons, 10 have very low p-values.

Here are the intervals shown on a plot.

aov(sqrt_count ~ spray, data=IS) |>
TukeyHSD() |>
plot(las=1)
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Differences in mean levels of spray

This plot provides a visual impression of the size and adjusted confidence intervals for each
comparison. An interval that includes zero indicates that the difference between those groups
is non-significant (i.e. the null hypothesis of no difference is retained). This was the case for
B-A, F-A, F-B, E-C, and E-D. From the earlier plots, this makes sense. A-B-F seem to be quite
similar, as do E-C-D.
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Oyster growth – two-way ANOVA

We will analyse a dataset (which I invented) from an experiment that manipulated salinity
and temperature and measured the growth of oysters in these different regimes.

Load data

oys <- read_csv("https://www.massey.ac.nz/~anhsmith/data/oystergrowth.csv")

str(oys)

spc_tbl_ [60 x 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ ...1 : num [1:60] 1 2 3 4 5 6 7 8 9 10 ...
$ Growth : num [1:60] 5.93 5.48 5.65 6.28 6.31 ...
$ Salinity : chr [1:60] "Low" "Low" "Low" "Low" ...
$ Temperature: chr [1:60] "Low" "Low" "Low" "Low" ...
- attr(*, "spec")=
.. cols(
.. ...1 = col_double(),
.. Growth = col_double(),
.. Salinity = col_character(),
.. Temperature = col_character()
.. )
- attr(*, "problems")=<externalptr>

The response variable is Growth.

There are two factors:

Factor A: Temperature, a = 3 levels (High, Medium, and Low) Factor B: Salinity, b = 2
levels (High and Low),

table(oys$Salinity, oys$Temperature)

20



High Low Med
High 10 10 10
Low 10 10 10

The table above shows a count of 10 data points per combination of Temperature and
Salinity. The equal number of observations among cells shows the experiment has a crossed
and balanced design.

Ordering factors

The Temperature variable is ordinal, having a natural order. R does not know this automat-
ically.

factor(oys$Temperature) |> levels()

[1] "High" "Low" "Med"

We can tell R the correct order of the factors by turning them into ordered factors.

oys <- oys |>
mutate(

Temperature = factor(
Temperature,
levels = c("Low","Med","High")
),

Salinity = factor(
Salinity,
levels = c("Low","High")
)

)

We will first examine separately the effects of Temperature and Salinity on Growth, first
focusing on Temperature.

ggplot(oys) +
aes(x = Growth, y = Temperature) +
geom_boxplot()
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ggplot(oys) +
aes(x = Growth, y = Temperature) +
geom_violin() +
geom_jitter(width=0, height=.1, alpha = .4)
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One-way ANOVAs

What are your first impressions of these data? Do you think that Temperature has an effect
on the Growth of oysters here? Do you think an ANOVA is an appropriate analysis to use?
Would you expect the assumptions of ANOVA to be upheld?

Two things stand out. Firstly, it does not look like Temperature has a strong effect Growth—
the variation within the groups looks to be much larger than the variation among groups. The
one-way ANOVA agrees.

aov(Growth ~ Temperature, data=oys) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
Temperature 2 2.18 1.088 0.784 0.461
Residuals 57 79.10 1.388

Secondly, the data seem to have different variances among the three groups. We can use a
Levene’s test to confirm this.

car::leveneTest(y = oys$Growth, group = oys$Temperature)

23



Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 27.45 4.475e-09 ***
57

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now make the same plots for Salinity and Growth.

The same general result was obtained for Salinity as it was for Temperature—there was not
apparent effect of Salinity on Growth, and the dispersions among groups are significantly
different (although only marginally so).

Interaction plots

Now we will examine Growth simultaneously in terms of both Temperature and Salinity.

Let’s make a plot.

g_oys_st <- oys |>
ggplot() +
aes(x = Temperature, y = Growth, colour = Salinity) +
geom_point(

alpha = .4,
position = position_dodge(width = .3)
)

g_oys_st
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Let’s add the means to the plot above. First, let’s calculate the means of each combination of
Temperature and Salinity.

mean_growth <- oys |>
group_by(Temperature, Salinity) |>
summarise(Growth = mean(Growth))

mean_growth

# A tibble: 6 x 3
# Groups: Temperature [3]
Temperature Salinity Growth
<fct> <fct> <dbl>

1 Low Low 5.86
2 Low High 8.12
3 Med Low 7.10
4 Med High 7.36
5 High Low 8.87
6 High High 6.04

Now add the means as lines.
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g_oys_st +
geom_line(

data = mean_growth,
mapping = aes(group = Salinity),
position = position_dodge(width = .3)
)
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Note, we can make this plot without pre-calculating the means, by way of the stat_summary()
function.

g_oys_st +
stat_summary(

aes(group = Salinity),
fun = mean,
geom="line",
position = position_dodge(width = .3)
)
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So, our one-group analysis was unable to tell the real story in this dataset.

Before doing a formal two-way ANOVA, try to understand this graph.

Do you expect to find a significant interaction?

Why do you think there was no discernable pattern in the one-factor analyses?

Will differing dispersions among groups still be a problem?

Two-way ANOVA

OK, let’s take a look at an ANOVA model with both factors included, plus the interaction. For
this, you can write the full formula: Temperature + Salinity + Temperature:Salinity. In
R, Temperature:Salinity is syntax for the interaction between Temperature and Salinity.
Alternatively, this formula can be specified using this syntax: Temperature*Salinity. This
is equivalent to writing the full formula explicitly. Both factors, and their interaction, are
included.

aov(Growth ~ Temperature * Salinity, data = oys) |> summary()
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Df Sum Sq Mean Sq F value Pr(>F)
Temperature 2 2.18 1.09 4.388 0.0171 *
Salinity 1 0.16 0.16 0.660 0.4200
Temperature:Salinity 2 65.54 32.77 132.148 <2e-16 ***
Residuals 54 13.39 0.25
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interaction

First, we look at the interaction Temperature:Salinity. It is highly significant and the most
important source of explained variation in the model. This was abundantly clear when we
plotted Growth according to both factors simultaneously. The mean lines on the plot were not
parallel, which is indicative of an interaction.

Temperature and Salinity have an effect on Growth but they are no independent. The
effect of Temperature on Growth depends on Salinity, and the effect of Salinity on Growth
depends on Temperature.

Without taking Salinity into account, Temperature has no apparent effect. For low Salinity
environments, growth increases with increasing Temperature. For high Salinity, the opposite
is true: Growth decreases with increasing Temperature.

There is an important lesson to be learned here. A variable that is important for explaining
variation in the response, but not included in the model, can obfuscate the relationship between
the response and the variables that you have included, particularly when interactions are
present.

So-called ‘latent’ variables cause problems in science. This highlights the importance of know-
ing all the important causes of variation in a measured response. Two strategies may then be
employed. You can hold a variable constant (e.g., examine temperature in medium salinity
environments) but this restricts the inference space of your conclusions (they would only be
valid for medium salinity). Alternatively, you can include a variable in the design (or measure
it if it is not easily manipulated), ensuring that it is accounted for in any analyses.

Another potential consequence of an unknown latent variable is excess dispersion in some
groups. This resulted in a significant departure from group homogeneity in the Levene’s test
for both Salinity and Temperature when the other was left out.

Another thing to note is that, when the interaction is significant, we don’t need to worry about
the main effects of the two factors.
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Post-hoc group comparisons

The next step in the analysis is to test which levels of the factors differ from each other, using
a multiple comparisons procedure, such as Tukey’s Honest Significant Differences. Because
the interaction is significant, it is the comparison within the interaction term that will be of
most interest. There are six cells (3×2), so the number of comparisons within the interaction
term will be six-choose-two:

choose(6,2)

[1] 15

Run a Tukey analysis.

aov(Growth~Salinity*Temperature, data=oys) |> TukeyHSD()

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Growth ~ Salinity * Temperature, data = oys)

$Salinity
diff lwr upr p adj

High-Low -0.1044926 -0.3622801 0.1532949 0.4199781

$Temperature
diff lwr upr p adj

Med-Low 0.2424207 -0.13709813 0.6219396 0.2808614
High-Low 0.4664160 0.08689709 0.8459349 0.0124178
High-Med 0.2239952 -0.15552366 0.6035141 0.3366941

$`Salinity:Temperature`
diff lwr upr p adj

High:Low-Low:Low 2.2550543 1.59707046 2.91303820 0.0000000
Low:Med-Low:Low 1.2409233 0.58293938 1.89890712 0.0000118
High:Med-Low:Low 1.4989726 0.84098870 2.15695644 0.0000002
Low:High-Low:Low 3.0072339 2.34925004 3.66521778 0.0000000
High:High-Low:Low 0.1806524 -0.47733150 0.83863624 0.9642520
Low:Med-High:Low -1.0141311 -1.67211494 -0.35614720 0.0004194
High:Med-High:Low -0.7560818 -1.41406562 -0.09809788 0.0155079

29



Low:High-High:Low 0.7521796 0.09419571 1.41016345 0.0162888
High:High-High:Low -2.0744020 -2.73238583 -1.41641809 0.0000000
High:Med-Low:Med 0.2580493 -0.39993455 0.91603319 0.8541174
Low:High-Low:Med 1.7663107 1.10832678 2.42429452 0.0000000
High:High-Low:Med -1.0602709 -1.71825476 -0.40228702 0.0002074
Low:High-High:Med 1.5082613 0.85027746 2.16624520 0.0000001
High:High-High:Med -1.3183202 -1.97630408 -0.66033634 0.0000033
High:High-Low:High -2.8265815 -3.48456541 -2.16859767 0.0000000

First, in the single-factor comparisons (ignoring the other factor), only one comparison is
significant—between high and low temperatures. The difference is only 0.46, however, and
we know that this comparison does not represent the real effects of temperature on growth.
It is marginalised over salinity, whereas we now know that the most important effects of
temperature are, in fact, conditional on salinity.

For the interaction comparisons, 13 out of 15 are significantly different. You should refer to the
interaction plot on the previous page (or on your screen) to make some sense of which of the
comparisons are large or small. For example, the first line gives the comparison between the
low-salinity-low-temperature group and the high-salinity-low-temperature group (i.e. the two
groups to the left of the interaction plot above). It is one of the largest absolute differences and
is highly significant. The greatest difference is on the ninth line of the interaction comparisons:
low-salinity-high-temperature vs low-salinity-low-temperature (i.e., those at opposite ends of
the low-salinity line on the interaction plot).

We can also plot the comparisons and corresponding Tukey intervals. The which argument
allows you to restrict the output to particular terms (here, the interaction).

tuk <- aov(Growth~Salinity*Temperature, data=oys) |>
TukeyHSD(which = "Salinity:Temperature")

par(mar=c(5,10,3,1)) # adjust the margins so you can read the labels
plot(tuk, las = 1)
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Goats – Analysis of Covariance

Figure 1: A goat

Here, we will use a dataset1 containing the weights of 40 goats before and after an experiment
where 20 were given a standard drenching treatment and 20 were given a more intensive
drenching treatment. There are three columns corresponding to the treatment (Tmt), the
gain in weight over the experiment (WtGain, kg), and the initial weight at the start of the
experiment (InitialWt, kg).
2 Source: Saville DJ, Wood GR (1991) Statistical Methods: The Geometric Approach. Springer,
New York.

Load the data

goat <- read_table("https://www.massey.ac.nz/~anhsmith/data/goats.txt")

str(goat)

spc_tbl_ [40 x 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)

1Data originally sourced from Beall, G. 1942. The transformation of data from entomological field experiments.
Biometrika 32:243.

2Data originally sourced from Beall, G. 1942. The transformation of data from entomological field experiments.
Biometrika 32:243.
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$ Tmt : chr [1:40] "standard" "standard" "standard" "standard" ...
$ WtGain : num [1:40] 5 3 8 7 6 4 8 6 7 5 ...
$ InitialWt: num [1:40] 21 24 21 22 23 26 22 23 24 20 ...
- attr(*, "spec")=
.. cols(
.. Tmt = col_character(),
.. WtGain = col_double(),
.. InitialWt = col_double()
.. )

The initial weight is included because of commonly observed biological phenomenon known as
“regression to the norm”, where lighter animals even the ledger by gaining more weight than
the heavier animals. By using an ANCOVA model that incorporates the initial weight as a
covariate can therefore give us more power to detect an effect of the treatment.

Fitting treatment only

Let’s start with a boxplot of the response variable by reference to the predictor of interest,
treatment.

goat |>
ggplot() +
aes(x = WtGain, y = Tmt) +
geom_boxplot()
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There seems to be a reasonable effect of treatment. This is apparent in an ANOVA fitted
without the covariate.

aov(WtGain ~ Tmt, data = goat) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
Tmt 1 16.9 16.900 4.13 0.0492 *
Residuals 38 155.5 4.092
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sure enough, effect of the treatment is significant, though it is marginally so. The effect size
can be viewed in a linear model summary.

lm(WtGain ~ Tmt, data=goat) |> summary()

Call:
lm(formula = WtGain ~ Tmt, data = goat)

Residuals:
Min 1Q Median 3Q Max
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-3.85 -1.55 0.15 1.15 4.45

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8500 0.4523 15.144 <2e-16 ***
Tmtstandard -1.3000 0.6397 -2.032 0.0492 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.023 on 38 degrees of freedom
Multiple R-squared: 0.09803, Adjusted R-squared: 0.07429
F-statistic: 4.13 on 1 and 38 DF, p-value: 0.04916

From here, we can see that the estimated difference between the treatments is 1.3 kg—the
mean for intensive is 6.85 kg and the mean for standard is 5.55 kg.

goat |> group_by(Tmt) |> summarise(mean = mean(WtGain))

# A tibble: 2 x 2
Tmt mean
<chr> <dbl>

1 intensive 6.85
2 standard 5.55

The fitted model explains only 10% of the variation in the data. The average difference between
the fitted means and the observations is 2.023, which is greater than the estimated difference
in means. So, all in all, there is a significant effect but it is not large. We can estimate a 95%
confidence interval for this difference using ̂𝑑 + 𝑡𝑑𝑓,[0.025,0.975] × SE( ̂𝑑).

-1.3 + qt(c(.025,.975), 38) * 0.6397

[1] -2.595004947 -0.004995053

So, the confidence interval for the difference is {0.005 , 2.595}.

Fitting Initial Weight only

Now we will look at the effect of the covariate, InitialWt.
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goat |>
ggplot() +
aes(x = InitialWt, y = WtGain) +
geom_point(alpha = .4)
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We can see that there is a relationship between the initial weight of the goats and the gain in
weight, in that the goats that were lighter at the start of the experiment gained more weight.

Look at a linear model using this predictor alone.

lm(WtGain ~ InitialWt, data = goat) |> summary()

Call:
lm(formula = WtGain ~ InitialWt, data = goat)

Residuals:
Min 1Q Median 3Q Max

-3.607 -1.206 0.163 1.054 3.871

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 14.39581 1.85047 7.780 2.22e-09 ***
InitialWt -0.35403 0.07906 -4.478 6.68e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.723 on 38 degrees of freedom
Multiple R-squared: 0.3454, Adjusted R-squared: 0.3282
F-statistic: 20.05 on 1 and 38 DF, p-value: 6.681e-05

For every extra kilogram of weight at the start, the goat is expected to gain 354 g less over the
course of the experiment. The effect is highly significant, and explains 35% of the variation
in weight gain. We are not interested in this effect though, per se, because it has been
demonstrated many times before. We are most interested in the effect of the treatment.

Fitting both… ANOVA!

Now we will look at the effect of the Tmt in the context of the covariate, InitialWt.

ggoat <- goat |>
ggplot() +
aes(x = InitialWt, y = WtGain, colour = Tmt) +
geom_point(alpha = .4)

ggoat
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This shows the effects of both predictors simultaneously. We can envisage two lines on this
graph—one through the Intensive points and one through the Standard points. The difference
in the heights of these lines is the effect of treatment, the slope of the lines is the effect of the
initial weight, and any difference in the slopes of the lines is the interaction between the two
predictors.

Now fit a model including both these predictors simultaneously, including any interaction.

aov(WtGain ~ InitialWt * Tmt, data=goat) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
InitialWt 1 59.55 59.55 22.211 3.6e-05 ***
Tmt 1 16.00 16.00 5.966 0.0196 *
InitialWt:Tmt 1 0.34 0.34 0.128 0.7230
Residuals 36 96.51 2.68
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first thing is to check for a significant interaction. There is not, so we can assume that
there is no difference in the slope of the lines for Intensive and Standard treatments. Thus,
there is no evidence that the effect of the initial weight varies among the two treatments, or
that the treatment effect varies according to the initial weight.
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Applying the drop1() function supports that the more parsimonious model is that without
the interaction.

aov(WtGain ~ InitialWt * Tmt, data = goat) |> drop1()

Single term deletions

Model:
WtGain ~ InitialWt * Tmt

Df Sum of Sq RSS AIC
<none> 96.514 43.232
InitialWt:Tmt 1 0.34225 96.857 41.374

Now we can confidently fit the model with just the two main effects.

aov(WtGain ~ InitialWt + Tmt, data = goat) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
InitialWt 1 59.55 59.55 22.75 2.87e-05 ***
Tmt 1 16.00 16.00 6.11 0.0182 *
Residuals 37 96.86 2.62
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I have put the treatment in the model after the initial weight, so we effectively obtain the
Type II sum of squares for treatment, i.e., the variation that is attributable to treatment only,
after all the variation attributable to initial weight has been accounted for. This provides a
more conservative test for our effect of interest. It matters little in this case, however. Review
the table for when treatment alone is fit.

aov(WtGain ~ Tmt, data = goat) |> summary()

Df Sum Sq Mean Sq F value Pr(>F)
Tmt 1 16.9 16.900 4.13 0.0492 *
Residuals 38 155.5 4.092
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The SS for treatment has decreased only slightly from the inclusion of initial weight, from 16.9
to 16.0.

More importantly, though, the F-ratio has increased by 50% and the P-value has decreased
from 0.05 to 0.02! Just from including another (potentially competing) predictor in the model!
Take a moment to consider how this might have happened.

The key here is the decrease in the residual SS from 156 to 97. The F-ratio is calculated from
the treatment SS divided by the residual SS. Therefore, if you decrease the residual SS, you
can increase the value of F. By attributing variation to a covariate, it is no longer considered to
be part of the random, unexplained variation. Our ability to detect an effect of the treatment
is therefore strengthened.

This is also apparent in the linear model summary.

lm(WtGain ~ InitialWt + Tmt, data=goat) |> summary()

Call:
lm(formula = WtGain ~ InitialWt + Tmt, data = goat)

Residuals:
Min 1Q Median 3Q Max

-2.9716 -1.2419 -0.0338 0.9878 3.2231

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.96661 1.75261 8.540 2.82e-10 ***
InitialWt -0.35137 0.07424 -4.733 3.21e-05 ***
Tmtstandard -1.26486 0.51169 -2.472 0.0182 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.618 on 37 degrees of freedom
Multiple R-squared: 0.4382, Adjusted R-squared: 0.4078
F-statistic: 14.43 on 2 and 37 DF, p-value: 2.331e-05

While the estimated effect of the treatment has reduced from a difference of 1.30 to 1.26,
the standard error has reduced from 0.64 to 0.51. We can recalculate the confidence interval
for the difference (we remove a degree of freedom for the fact that we are also estimating a
regression slope).

-1.26 + qt(c(.025,.975),37) * 0.51169
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[1] -2.2967824 -0.2232176

The interval for the difference {0.223 , 2.297} is quite a bit smaller than the one obtained
earlier when fitting treatment alone {0.005 , 2.595}, and no longer brushes so close to zero.

Plotting the model

We can get ggplot to fit two linear models (one for each treatment) on our scatterplot.

ggoat + stat_smooth(method="lm")
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However, notice that the slopes are different. In our model, the slopes are the same, because
it doesn’t have an interaction between InitialWt and Tmt. This is where the visreg package
is very useful!

library(visreg)

lm(WtGain ~ InitialWt + Tmt, data=goat) |>
visreg(xvar = "InitialWt", by = "Tmt", overlay = TRUE, gg = TRUE)
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Dataset alfalfa

This dataset is from the R package faraway. The alfalfa dataset frame has 25 rows and 4
columns. Data comes from an experiment to test the effects of seed inoculum, irrigation and
shade on alfalfa yield.

This data frame contains the following columns:

shade: Distance of location from tree line divided into 5 shade areas

irrigation: Irrigation effect divided into 5 levels

inoculum: Four types of seed incolum, A-D with E as control

yield: Dry matter yield of alfalfa

library(tidyverse)

data(alfalfa, package = "faraway")

head(alfalfa, 25)

Exercise 8.1

Obtain the main effects and interaction plots.

Old style Main effects plots:

mod1 <- aov(yield ~ shade + irrigation + inoculum,
data=alfalfa)

library(effects)

plot(allEffects(mod1))

Old style Interaction effects plots:
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mod2 <- aov(
yield ~ shade*irrigation*inoculum - shade:irrigation:inoculum,
data = alfalfa
)

library(effects)

mod1 <- lm(yield ~ shade * irrigation, data = alfalfa)

effect('shade:irrigation',
mod = mod1) |>

plot(multiline = TRUE)

mod2 <- lm(yield ~ shade * inoculum, data = alfalfa)

effect('shade:inoculum',
mod=mod2) |>

plot(multiline=TRUE)

mod3 <- lm(yield ~ irrigation * inoculum, data = alfalfa)

effect('irrigation:inoculum',
mod=mod3) |>

plot(multiline=TRUE)

ggplot2 can produce good main effects and interaction plots but the R codes for this task are
not short. For main effects plot-

library(ggplot2)

plot1 <- ggplot(alfalfa) +
aes(x = shade, y = yield) +
stat_summary(fun = mean, geom = "point", aes(group = 1)) +
stat_summary(fun = mean, geom = "line", aes(group = 1)) +
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("Main effect of shade")

plot2 <- ggplot(alfalfa) +
aes(x = irrigation, y = yield) +

44



stat_summary(fun = mean, geom = "point", aes(group = 1)) +
stat_summary(fun = mean, geom = "line", aes(group = 1)) +
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("Main effect of irrigation")

plot3 <- ggplot(alfalfa) +
aes(x = inoculum, y = yield) +
stat_summary(fun = mean, geom = "point", aes(group = 1)) +
stat_summary(fun = mean, geom = "line", aes(group = 1)) +
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("Main effect of inoculum")

library(patchwork)
plot1+plot2+plot3

For interaction plot-

#Interactions Plot
plot4 <- ggplot(alfalfa) +
aes(x = shade, y = yield,

group = irrigation, colour = irrigation) +
stat_summary(fun=mean, geom="point")+
stat_summary(fun=mean, geom="line")+
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("shade*irrigation interaction")

plot5 <- ggplot(alfalfa) +
aes(x = inoculum, y = yield,

group = irrigation, colour = irrigation) +
stat_summary(fun=mean, geom="point")+
stat_summary(fun=mean, geom="line")+
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("inoculum*irrigation interaction")

plot6 <- ggplot(alfalfa) +
aes(x = shade, y = yield,

group = inoculum, colour = inoculum) +
stat_summary(fun=mean, geom="point")+
stat_summary(fun=mean, geom="line")+
geom_hline(aes(yintercept = mean(yield)), alpha = .7) +
ggtitle("shade*inoculum interaction")
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plot4 / plot5 / plot6

Exercise 8.2

Fit one-way ANOVA models to this dataset.

anova1 <- aov(yield ~ shade, data = alfalfa)
summary(anova1)

anova2 <- aov(yield ~ irrigation, data = alfalfa)
summary(anova2)

anova3 <- aov(yield ~ inoculum, data = alfalfa)
summary(anova3)

plot(TukeyHSD(anova1))

plot(TukeyHSD(anova2))

plot(TukeyHSD(anova3))

Exercise 8.3

Fit a three-factor (additive) ANOVA model without interactions.

anova1 <- aov(yield ~ shade + irrigation + inoculum,
data = alfalfa)

summary(anova1)

library(ggfortify)
autoplot(anova1, 1)

For the base R style four diagnostic plots, use plot(anova1) and set the par.

par(mfrow=c(2,2))
plot(anova1)

46



26 30 34 38

−
3

Fitted values

R
es

id
ua

ls Residuals vs Fitted

2114

6

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals

21 14

6

26 30 34 38

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
2114 6

−
3

Factor Level CombinationsS
ta

nd
ar

di
ze

d 
re

si
du

al
s

1 2 3 4 5
shade :

Constant Leverage:
 Residuals vs Factor Levels

2114

6

Exercise 8.4

Fit the indicator variable regression model of yield ~ inoculum

alfalfa <- alfalfa |>
mutate(

I.A = as.numeric(inoculum=="A"),
I.B = as.numeric(inoculum=="B"),
I.C = as.numeric(inoculum=="C"),
I.D = as.numeric(inoculum=="D")

)

indicator.reg <- lm(yield ~ I.A + I.B + I.C + I.D,
data = alfalfa)

summary(indicator.reg)

Note that this regression allows the treatments to be compared with the control.
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Exercise 8.5

shade is a categorical variable of factor codes but let us (incorrectly) treat it as numerical
(and if the actual distances are given, then the distance variable becomes a covariate). Fit
ANCOVA of yield on the inoculum factor and shade covariate.

R:

ancova.model <- lm(yield ~ as.numeric(shade) * inoculum,
data = alfalfa)

summary(ancova.model)

Exercise 8.6

In a two-factor experiment, one of the factors was assigned to main plot (main-plot fac-
tor), the second factor, called the subplot factor, was assigned into subplots. The dataset
https://www.massey.ac.nz/~kgovinda/data/plots.RData gives the experimental set up.
Perform the ANOVA for this basic split-plot experiment.

R:

url1 <- "https://www.massey.ac.nz/~anhsmith/data/plots.RData"
download.file(url = url1, destfile = "plots.RData")
load("plots.RData")

plots

sp.model <- aov(yield ~ block + A*B + Error(block/A),
data=plots)

summary(sp.model)

#Incorrect model
summary(aov(yield ~ block + A*B ,

data=plots))

• More R code examples are here
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