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Horse hearts

We will use the horses’ hearts dataset. There are seven variables represented as columns. They
comprise six ultrasound measurements and the weights of 46 horses’ hearts, specifically:

1. INNERSYS : Inner-wall ultrasound measurement in systole phase.
2. INNERDIA : Inner-wall ultrasound measurement in diastole phase.
3. OUTERSYS : Outer-wall ultrasound measurement in systole phase.
4. OUTERDIA : Outer-wall ultrasound measurement in diastole phase.
5. EXTSYS : Exterior ultrasound measurement in systole phase.
6. EXTDIA : Exterior ultrasound measurement in diastole phase.
7. WEIGHT : Weight in kilograms.

We will build a multiple regression model to predict the weights of hearts using the six ultra-
sound measurements.

Load data

hh <- read_csv("https://www.massey.ac.nz/~anhsmith/data/horsehearts.csv")

Pairs plot

library(GGally)

ggpairs(hh)
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This plot reveals some very high correlation amongst predictors, particularly (not surprisingly)
between the same measurements taken in the different phases (diastolic and systolic). Thus,
multicollinearity is likely to be a problem when fitting a multiple regression model. The
challenge will be choose the subset of variables that provides the best model fit.

lm output

Let’s start by fitting the full model with all of the available predictor variables.

The formula WEIGHT ~ . fits a model with WEIGHT as the response variable and all other
variables in the data frame as predictor variables.

mf <- lm(WEIGHT ~ . , data = hh)

summary(mf)

Call:
lm(formula = WEIGHT ~ ., data = hh)

Residuals:
Min 1Q Median 3Q Max
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-1.05051 -0.35313 0.01948 0.18674 2.09335

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.6311 0.4879 -3.343 0.00184 **
INNERSYS 0.2321 0.3083 0.753 0.45617
INNERDIA 0.5195 0.3954 1.314 0.19654
OUTERSYS 0.7114 0.3288 2.164 0.03668 *
OUTERDIA -0.5574 0.4510 -1.236 0.22386
EXTSYS -0.2996 0.1346 -2.227 0.03182 *
EXTDIA 0.3387 0.1475 2.296 0.02716 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6006 on 39 degrees of freedom
Multiple R-squared: 0.7525, Adjusted R-squared: 0.7145
F-statistic: 19.77 on 6 and 39 DF, p-value: 1.922e-10

Interpreting summary.lm output

There is a lot of information in the above summary output to process. Let’s break it
down.

1. The Call part shows us the command we used to produce the model.

2. The Residuals part gives us a five-number summary of the residuals.

3. The Coefficients table provides the estimates of the model parameters. Specifi-
cally, the Estimate column gives us the estimates of the 𝛽-coefficients, which can
be used to reconstruct the predictive formula. Here, that formula is:

̂𝑦 = −1.6311+0.2321×𝐼𝑁𝑁𝐸𝑅𝑆𝑌 𝑆+0.5195×𝐼𝑁𝑁𝐸𝑅𝐷𝐼𝐴+...+0.3387×𝐸𝑋𝑇 𝐷𝐼𝐴

The Std. Error column gives the standard error for the estimates of the coeffi-
cients. That is, the expected average deviation of the estimator of the coefficient
(𝑏 or ̂𝛽) from the true population parameter (𝛽). If we were to take many samples
(of size 𝑛) from this population, a coefficient’s standard error represents how much
the estimate is expected to vary (due to sampling variation).
The t value is the estimate divided by its standard error, which can be used to
test whether the effect of that variable is statistically different from zero. The p-
value for this test is provided in the next column, headed Pr(>|t|). If the p-value

5



is low, the observed coefficient estimate is unlikely to have resulted by chance due
to sampling variation if the null hypothesis (𝐻0 ∶ 𝛽 = 0) is true. Asterisks indicate
significant results, as coded by the Signif. codes: given below the table.

4. The final three lines give results for the entire model.
The final three lines give results for the entire model.
The Residual standard error is an estimate of the standard deviation of the
residuals, i.e. the average absolute difference between the predicted values and the
actual values. When estimating the weight of horse’s hearts using this model, we
would expect to, on average, be wrong by 0.6 kg. The degrees of freedom here are
the residual degrees of freedom—the number of independent pieces of information
with which the residual standard error was estimated.
Next, we have the Multiple R-squared, which is the proportion of the total vari-
ation in y that is explained by the model. Here, 75% of the variation is explained.
The Adjusted R-squared is adjusted for the number of variables included in the
model (see lecture slides). It cannot be interpreted in same way as the unadjusted
𝑅2 can, but it can be used to compare models.
Finally, an F-statistic, associated degrees of freedom (DF) , and p-value are
provided. This tests whether the model explains a significant proportion of the total
variation in y. This can be thought of as testing whether any of the 𝛽 coefficients in
model are non-zero. Here, the p-value is very small so we reject the null hypothesis
that all of the 𝛽 coefficients in model are zero.

Variance Inflation Factor

We mentioned earlier that we were concerned with multicollinearity—correlation among the
predictors. A consequence of multicollinearity is that it increases the uncertainty in the esti-
mates of the coefficients—the standard errors of the coefficients are inflated. We can quantify
this effect, for each coefficient, with the Variance Inflation Factor (VIF). This is given by the
function car::vif()1.

car::vif(mf)

INNERSYS INNERDIA OUTERSYS OUTERDIA EXTSYS EXTDIA
8.772969 8.602746 7.706493 6.662813 16.046340 21.996455
1The car::vif() notation calls the function vif() from within the package car. Alternatively, you can load

the package into R with the command library(car). After doing this, all functions in the car package
become available, so you can call the function directly as vif(), omitting the car::. Either way, you must
have the package installed, of course!
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According to a rule of thumb, a VIF > 5 is cause for some concern. A VIF > 10 is definitely
problematic. So, we have a problem here.

The above VIF values pertain to variances. I find it more intuitive to discuss the square root
of the VIF because they relate to the standard errors.

sqrt(car::vif(mf))

INNERSYS INNERDIA OUTERSYS OUTERDIA EXTSYS EXTDIA
2.961920 2.933044 2.776057 2.581242 4.005788 4.690038

These √VIF values can be interpreted in the following way: the standard error for the effect
of INNERSYS is around three times larger because of the presence of the other (correlated)
variables in the model. The VIF is greatest for EXTDIA, which is consistent with this variable
seeming to have the highest correlations with the other predictors.

Model selection

Statisticians use the term “parsimonious” to describe a model that contains no more pre-
dictors than necessary to adequately model the data—a model that has the right balance of
complexity.

Let’s run a stepwise model selection process to try to find a more parsimonious model than
the full model created above. The criterion we will use to assess the quality of the models is
Akaike Information Criterion (AIC). Lower AIC values (i.e. closer to −∞) are better.

We will undertake a stepwise process in individual steps, using the drop1() function.

drop1(mf)

Single term deletions

Model:
WEIGHT ~ INNERSYS + INNERDIA + OUTERSYS + OUTERDIA + EXTSYS +

EXTDIA
Df Sum of Sq RSS AIC

<none> 14.068 -40.500
INNERSYS 1 0.20434 14.272 -41.836
INNERDIA 1 0.62273 14.690 -40.507
OUTERSYS 1 1.68862 15.756 -37.285
OUTERDIA 1 0.55102 14.618 -40.732
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EXTSYS 1 1.78829 15.856 -36.995
EXTDIA 1 1.90084 15.968 -36.670

We have taken the full model (all predictors included) and asked what the AIC values2 would
be obtained if we dropped each one of the predictors (or none). The lowest AIC score is for
the model with INNERSYS removed… so let’s remove it and then use drop1() again.

m2 <- update(mf, ~ . - INNERSYS)
drop1(m2)

Single term deletions

Model:
WEIGHT ~ INNERDIA + OUTERSYS + OUTERDIA + EXTSYS + EXTDIA

Df Sum of Sq RSS AIC
<none> 14.272 -41.836
INNERDIA 1 2.59025 16.862 -36.164
OUTERSYS 1 2.11154 16.383 -37.489
OUTERDIA 1 0.46718 14.739 -42.355
EXTSYS 1 1.59023 15.862 -38.977
EXTDIA 1 1.70093 15.973 -38.657

Now we remove OUTERDIA and repeat.

m3 <- update(m2, ~ . - OUTERDIA)
drop1(m3)

Single term deletions

Model:
WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS + EXTDIA

Df Sum of Sq RSS AIC
<none> 14.739 -42.355
INNERDIA 1 3.2083 17.947 -35.295
OUTERSYS 1 2.0972 16.836 -38.235
EXTSYS 1 1.3505 16.090 -40.322
EXTDIA 1 1.3250 16.064 -40.395

2Negative values of AIC, as seen here, are uncommon but are nothing to worry about. This occurs when the
values of the response variable are small.
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This time, the best model is that with none removed, so the model selection process stops
there. Note that this whole process could have been done in a single line of code.

mstep <- step(mf)

Start: AIC=-40.5
WEIGHT ~ INNERSYS + INNERDIA + OUTERSYS + OUTERDIA + EXTSYS +

EXTDIA

Df Sum of Sq RSS AIC
- INNERSYS 1 0.20434 14.272 -41.836
- OUTERDIA 1 0.55102 14.618 -40.732
- INNERDIA 1 0.62273 14.690 -40.507
<none> 14.068 -40.500
- OUTERSYS 1 1.68862 15.756 -37.285
- EXTSYS 1 1.78829 15.856 -36.995
- EXTDIA 1 1.90084 15.968 -36.670

Step: AIC=-41.84
WEIGHT ~ INNERDIA + OUTERSYS + OUTERDIA + EXTSYS + EXTDIA

Df Sum of Sq RSS AIC
- OUTERDIA 1 0.46718 14.739 -42.355
<none> 14.272 -41.836
- EXTSYS 1 1.59023 15.862 -38.977
- EXTDIA 1 1.70093 15.973 -38.657
- OUTERSYS 1 2.11154 16.383 -37.489
- INNERDIA 1 2.59025 16.862 -36.164

Step: AIC=-42.35
WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS + EXTDIA

Df Sum of Sq RSS AIC
<none> 14.739 -42.355
- EXTDIA 1 1.3250 16.064 -40.395
- EXTSYS 1 1.3505 16.090 -40.322
- OUTERSYS 1 2.0972 16.836 -38.235
- INNERDIA 1 3.2083 17.947 -35.295

When you run this, the whole three-step process we executed above will print onscreen and
the object mstep represents the stepwise-selected model.
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Let’s examine the stepwise model.

summary(mstep)

Call:
lm(formula = WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS + EXTDIA,

data = hh)

Residuals:
Min 1Q Median 3Q Max

-1.19400 -0.31530 -0.05037 0.20522 1.92298

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.5120 0.4681 -3.230 0.00244 **
INNERDIA 0.7991 0.2675 2.987 0.00473 **
OUTERSYS 0.4931 0.2042 2.415 0.02026 *
EXTSYS -0.2360 0.1218 -1.938 0.05950 .
EXTDIA 0.2500 0.1302 1.920 0.06185 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5996 on 41 degrees of freedom
Multiple R-squared: 0.7407, Adjusted R-squared: 0.7154
F-statistic: 29.28 on 4 and 41 DF, p-value: 1.554e-11

We still have two variables that are very highly correlated: EXTSYS and EXTDIA. Let’s see if
this correlation is problematic, according to the VIF criterion.

car::vif(mstep)

INNERDIA OUTERSYS EXTSYS EXTDIA
3.950323 2.981334 13.184774 17.198270

With VIF scores for these two variables still well above 5, this is certainly a problem. This
illustrates an important point: you must not naively accept a model which results from a
stepwise selection process. Always scrutinise a model before accepting it.

We will force a step where we drop either EXTSYS or EXTDIA.

drop1(mstep)
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Single term deletions

Model:
WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS + EXTDIA

Df Sum of Sq RSS AIC
<none> 14.739 -42.355
INNERDIA 1 3.2083 17.947 -35.295
OUTERSYS 1 2.0972 16.836 -38.235
EXTSYS 1 1.3505 16.090 -40.322
EXTDIA 1 1.3250 16.064 -40.395

mstep2 <- update(mstep, ~ . - EXTDIA)

Now, let’s try another step.

drop1(mstep2)

Single term deletions

Model:
WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS

Df Sum of Sq RSS AIC
<none> 16.064 -40.395
INNERDIA 1 5.0919 21.156 -29.729
OUTERSYS 1 3.3053 19.369 -33.788
EXTSYS 1 0.1091 16.173 -42.083

It seems that the model with EXTSYS removed, leaving only INNERDIA and OUTERSYS, is actually
preferable. Once the latter two variables are included, EXTSYS does not add any strength to
the model. Let’s make this model and check for further removals, and our VIFs.

mstep3 <- update(mstep2, ~ . - EXTSYS)
drop1(mstep3)

Single term deletions

Model:
WEIGHT ~ INNERDIA + OUTERSYS

Df Sum of Sq RSS AIC
<none> 16.173 -42.083
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INNERDIA 1 6.2151 22.388 -29.125
OUTERSYS 1 3.2771 19.450 -35.596

car::vif(mstep3)

INNERDIA OUTERSYS
2.471453 2.471453

It seems that this model cannot be improved by dropping any further variables. The variables
INNERDIA and OUTERSYS, though correlated (r = 0.77), do not exert undue influence on each
other in the model.

To summarise, let’s see the AIC scores for all the models we’ve made so far.

AIC(mf, m2, m3, mstep, mstep2, mstep3)

df AIC
mf 8 92.04262
m2 7 90.70599
m3 6 90.18764
mstep 6 90.18764
mstep2 5 92.14759
mstep3 4 90.45888

All of these models have very similar AIC. Statisticians say that AIC scores within, say,
3 points can be considered equivalent, and so often we take the approach of choosing the
simplest model (i.e. that with the fewest predictors) of all those within 3 AIC points of the
lowest score. In some fields it is common to report all models within 10 AIC points or produce
an ensemble model bases on AIC weight (not covered in this course). So, while the mstep3
model isn’t the absolute lowest, it is the simplest model from a bunch of models with roughly
equivalent AIC scores. Also, it is a good choice because it doesn’t have the problems with
severe multicollinearity found in the other models.

Don’t worry about the fact that the two functions drop1() and AIC() give different scores.
Remember the AIC is a tool for comparing models—the actual scores don’t matter. If you
look at the difference in AIC scores between two models from the two functions, they are the
same. It also should not be compared on models that have different data sources because it is
unit less and only acts to compare the models in a specific set.

Difference between AIC scores for mstep2 and mstep3 from the drop1(mstep2) output:
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-40.395 - (-42.083)

[1] 1.688

And from the AIC(mf, m2, m3, mstep, mstep2, mstep3) output:

92.14759 - 90.45888

[1] 1.68871

So now we can choose mstep3 and clean up.

rm(mf, m2, m3, mstep, mstep2) # this code removes these variables

Let’s examine the summary for our chosen model.

summary(mstep3)

Call:
lm(formula = WEIGHT ~ INNERDIA + OUTERSYS, data = hh)

Residuals:
Min 1Q Median 3Q Max

-1.08663 -0.33797 -0.08511 0.32755 1.82971

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.4948 0.3728 -4.009 0.000238 ***
INNERDIA 0.8797 0.2164 4.065 0.000201 ***
OUTERSYS 0.5612 0.1901 2.952 0.005100 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6133 on 43 degrees of freedom
Multiple R-squared: 0.7155, Adjusted R-squared: 0.7023
F-statistic: 54.07 on 2 and 43 DF, p-value: 1.833e-12

We are now explaining 72% of the variation in heart weights with two variables, as opposed
to 75% of the variation with six variables in the original full model. Note also that, in the
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full model, INNERDIA was not significant and OUTERSYS was only weakly significant. In the
smaller model, both these predictors were highly significant. Personally, I would definitely
prefer the more parsimonious two-variable model, especially if it meant that I had only to take
two, rather than six, ultrasound measurements on a thousand horses!

But we’re not done yet. We must use some diagnostic tools to examine whether our model
meets the assumptions of linear regression before we can accept it.

Model diagnostics

Examine the usual four diagnostic plots.

plot(mstep3)
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The Residuals-vs-Fitted plot shows a slight decreasing trend in the residuals at low fitted
values, but it is only a few points. It might pay, though, to bear in mind that the model is
likely to overestimate lower heart weights.

The normal Q-Q plot is not too worrying, although there are a few higher-than-expected
residuals.

The Scale-Location plot shows no strong evidence of heteroscedasticity—the variance appears
fairly constant across fitted values.

And, finally, there are no very large values of Cook’s distance or leverage.

There are many other diagnostic tools and graphs available, many in the car library, which
we do not have time to go into here. If you’re interested, this website is a good place to start:
http://www.statmethods.net/stats/rdiagnostics.html.

3D plots

Since there are three variables involved in this model, it might be useful to examine their
relationship using 3D plots. We can include the 2D plane that represents our regression model
on the plot, using the following code.

16

http://www.statmethods.net/stats/rdiagnostics.html


library(scatterplot3d)

hh3d <- scatterplot3d(
hh$INNERDIA,
hh$OUTERSYS,
hh$WEIGHT,
type="h",
highlight.3d=T,
pch=16
)

hh3d$plane3d(mstep3)
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Finally, use plotly to create a dynamic 3D plot which you can rotate using your mouse. Don’t
say I never treat you!

library(plotly)

plot_ly(
hh,
x = ~INNERDIA,
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y = ~OUTERDIA,
z = ~WEIGHT
) |>
add_markers()
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I do not recommend 3-D plots for print reports/publications. They are often best viewed
interactively. Instead try using colors or bubbles for continuous third variables and shapes or
facets for discrete third variables.

For example:

hh |> ggplot(aes(y=OUTERDIA, x=INNERDIA, color=WEIGHT))+
geom_point()
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Dataset Prestige

We will continue to use dataset Prestige from the car R package.

Exercise 7.1

Obtain the matrix plot of the numerical variables education, income, women, and prestige.

library(car)
library(GGally)
library(tidyverse)

Prestige |>
select(prestige, education, income, women) |>
ggpairs(aes(colour=Prestige$type))

Obtain their correlation matrix.

# Old style pairs plot
Prestige |>
select(prestige, education, income, women) |>
pairs()

Prestige |>
select(prestige, education, income, women) |>
cor()

Fit a (full) multiple regression of prestige on education, income, & women.

full.reg <- lm(prestige ~ education + income + women,
data = Prestige)

Obtain the plots for residual diagnostics. Residual plots
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library(ggfortify)

autoplot(full.reg, 1:6)

# Old style plots
plot(full.reg, 1) # the argument 1 can be changed up to 6

# or just use
par(mfrow=c(2,2))
plot(full.reg)

Regression outputs

summary(full.reg)

Call:
lm(formula = prestige ~ education + income + women, data = Prestige)

Residuals:
Min 1Q Median 3Q Max

-19.8246 -5.3332 -0.1364 5.1587 17.5045

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.7943342 3.2390886 -2.098 0.0385 *
education 4.1866373 0.3887013 10.771 < 2e-16 ***
income 0.0013136 0.0002778 4.729 7.58e-06 ***
women -0.0089052 0.0304071 -0.293 0.7702
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.846 on 98 degrees of freedom
Multiple R-squared: 0.7982, Adjusted R-squared: 0.792
F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16

anova(full.reg)

Analysis of Variance Table
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Response: prestige
Df Sum Sq Mean Sq F value Pr(>F)

education 1 21608.4 21608.4 350.9741 < 2.2e-16 ***
income 1 2248.1 2248.1 36.5153 2.739e-08 ***
women 1 5.3 5.3 0.0858 0.7702
Residuals 98 6033.6 61.6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

extractAIC(full.reg)

[1] 4.0000 424.1724

Exercise 7.2

Perform stepwise regression analysis of prestige on education, income, & women.

full.reg = lm(prestige ~ education + income + women,
data = Prestige)

step(full.reg)

step(full.reg, direction="backward")

step(full.reg, direction="both")

The function update() is handy for making adjustments to a model. For example, see try the
following codes:

m1 = update(full.reg, . ~ . - women)

summary(m1)

Note that . ~ . - women means that the model is fitted without the women variable.

Further options are available in leaps and HH packages (installation commands are given
below).

install.packages("leaps", repos = "https://cran.r-project.org") install.packages("HH",
repos = "https://cran.r-project.org")
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library(leaps)

model = regsubsets(prestige ~ education + income + women,
data = Prestige)

library(HH)

summaryHH(model)

plot(summaryHH(model))

Exercise 7.3

Perform a polynomial regression of prestige on income.

# Cubic fit
p.model <- lm(prestige ~ poly(income,3),

data = Prestige)

summary(p.model)

extractAIC(p.model)

plot(p.model)

autoplot(p.model)

• More R code examples are here
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