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Dataset chirps

For this tutorial, we will use a dataset on the striped ground cricket collected by George W.
Pierce and published in his 1948 book The Songs of Insects.

The dataset ch contains two variables: chirps: the number of chirps per second degF: the
temperature in degrees Fahrenheit.

The aim is to examine the relationship between these two variables. Specifically, we wish to
know whether the number of chirps changes with temperature.

Figure 1: The striped ground cricket, Allonemobius fasciatus

Load data

Let’s load the data and create a new variable, which is the temperature in Celsius.

ch <- read_csv("https://www.massey.ac.nz/~anhsmith/data/chirps.csv") |>
mutate(degC = (degF-32)*5/9)

We will examine how well the temperature predicts the frequency of chirping by this insect.

Plot

Plot the data, with temperature on the x-axis and chirps on the y-axis.
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ch |>
ggplot() +
aes(degC, chirps) +
geom_point()
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Add a ‘smoother’ line.

ch |>
ggplot() +
aes(degC, chirps) +
geom_point() +
geom_smooth()
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Well… it’s sort-of linear… ish… not really.

ch |>
ggplot() +
aes(degC, chirps) +
geom_point() +
geom_smooth(method = 'lm')
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Linear model

Now let’s fit a linear model and print it. (Just typing an object’s name is the same as applying
the function print.)

Fitting linear model

chm <- lm(chirps ~ degC, data = ch)

chm

Call:
lm(formula = chirps ~ degC, data = ch)

Coefficients:
(Intercept) degC

6.4725 0.3815
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# or print(chm)

This object contains a lot of information, but just printing it doesn’t show us all of it. Each
object in R has a ‘class’, which you can reveal like so.

Class

class(chm)

[1] "lm"

The model object created by the function lm() has class lm. If you unclass() this object,
you will see all the information it contains.

unclass(chm)

$coefficients
(Intercept) degC

6.472457 0.381465

$residuals
1 2 3 4 5 6

1.532589142 1.135313774 0.336540013 0.843865198 0.327989348 -0.127615826
7 8 9 10 11 12

0.237971364 0.031294055 1.001547697 -1.144208684 -1.560086053 0.004139772
13 14 15

-0.772011032 -0.386593793 -1.460734975

$effects
(Intercept) degC
-64.4980827 5.3185830 0.2895646 0.5875785 -0.0143477 -0.5955397

-0.3578650 -0.2784834 0.3987344 -1.4237522 -1.9256799 -0.2916837

-1.1143481 -0.6614861 -1.9030762

$rank
[1] 2

$fitted.values

7



1 2 3 4 5 6 7 8
18.46741 14.86469 19.46346 17.55613 16.77201 15.62762 14.46203 17.06871

9 10 11 12 13 14 15
14.39845 17.34421 16.56009 17.19586 16.77201 17.38659 15.86073

$assign
[1] 0 1

$qr
$qr

(Intercept) degC
1 -3.8729833 -1.033656e+02
2 0.2581989 1.394252e+01
3 0.2581989 -4.583652e-01
4 0.2581989 -9.974999e-02
5 0.2581989 4.768089e-02
6 0.2581989 2.628501e-01
7 0.2581989 4.820038e-01
8 0.2581989 -8.103759e-03
9 0.2581989 4.939575e-01
10 0.2581989 -5.990386e-02
11 0.2581989 8.752703e-02
12 0.2581989 -3.201138e-02
13 0.2581989 4.768089e-02
14 0.2581989 -6.787296e-02
15 0.2581989 2.190191e-01
attr(,"assign")
[1] 0 1

$qraux
[1] 1.258199 1.406296

$pivot
[1] 1 2

$tol
[1] 1e-07

$rank
[1] 2

attr(,"class")
[1] "qr"
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$df.residual
[1] 13

$xlevels
named list()

$call
lm(formula = chirps ~ degC, data = ch)

$terms
chirps ~ degC
attr(,"variables")
list(chirps, degC)
attr(,"factors")

degC
chirps 0
degC 1
attr(,"term.labels")
[1] "degC"
attr(,"order")
[1] 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(chirps, degC)
attr(,"dataClasses")

chirps degC
"numeric" "numeric"

$model
chirps degC

1 20.0 31.44444
2 16.0 22.00000
3 19.8 34.05556
4 18.4 29.05556
5 17.1 27.00000
6 15.5 24.00000
7 14.7 20.94444
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8 17.1 27.77778
9 15.4 20.77778
10 16.2 28.50000
11 15.0 26.44444
12 17.2 28.11111
13 16.0 27.00000
14 17.0 28.61111
15 14.4 24.61111

Attributes

Big compound objects such as a lm are often organised into sections called “attributes”, which
you can view with this function.

attributes(chm)

$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

$class
[1] "lm"

The attributes under the section “names” can be accessed using the dollar ($) notation, and
often with specific formulae. You can read what each of these represent in the help file of lm
(?lm). Many of them aren’t that useful, but the following ones certainly are.

chm$coefficients

(Intercept) degC
6.472457 0.381465

# or

# coef(chm)

This shows us 𝑎 and 𝑏, the sample estimates of the population parameters, 𝛼 and 𝛽. The
model we have fit to this dataset is thus 𝑌 = 6.47 + 0.38𝑋.

We can also extract the fitted values and residuals for the model.
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chm$fitted.values

1 2 3 4 5 6 7 8
18.46741 14.86469 19.46346 17.55613 16.77201 15.62762 14.46203 17.06871

9 10 11 12 13 14 15
14.39845 17.34421 16.56009 17.19586 16.77201 17.38659 15.86073

# or

# fitted(chm)

resid(chm)

1 2 3 4 5 6
1.532589142 1.135313774 0.336540013 0.843865198 0.327989348 -0.127615826

7 8 9 10 11 12
0.237971364 0.031294055 1.001547697 -1.144208684 -1.560086053 0.004139772

13 14 15
-0.772011032 -0.386593793 -1.460734975

Summary of a linear model

The function summary() shows us a useful display of the most important information from the
model.

summary(chm)

Call:
lm(formula = chirps ~ degC, data = ch)

Residuals:
Min 1Q Median 3Q Max

-1.56009 -0.57930 0.03129 0.59020 1.53259

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.47246 1.87653 3.449 0.004315 **
degC 0.38146 0.06968 5.475 0.000107 ***
---

11



Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9715 on 13 degrees of freedom
Multiple R-squared: 0.6975, Adjusted R-squared: 0.6742
F-statistic: 29.97 on 1 and 13 DF, p-value: 0.0001067

This presents a summary of the residuals; the estimates, standard errors, and t-tests for the
coefficients 𝛼 and 𝛽; the residual standard error; the coefficient of determination; and the
F-test. We can see that the p-values for the F-test and the t-test for the regression coefficient
(𝛽) are the same: we can conclude that temperature has a highly significant effect on the
frequency of chirps, accounting for around 70% of the variation. For every degree increase in
temperature, the number of chirps per second is expected to increase by 0.38.

We cannot just stop there, however. We need to examine the model and check the assump-
tions.

Plot the data again, this time with a linear regression line.

ch |>
ggplot() +
aes(degC, chirps) +
geom_point() +
geom_abline(

intercept = 6.47246,
slope = 0.38146
)
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We can also use the function predict() to extract the fitted values, with confidence or pre-
diction intervals for each data point.

predict(chm, interval="confidence")

fit lwr upr
1 18.46741 17.56955 19.36527
2 14.86469 13.97481 15.75457
3 19.46346 18.22919 20.69773
4 17.55613 16.90760 18.20467
5 16.77201 16.22807 17.31595
6 15.62762 14.95122 16.30401
7 14.46203 13.44151 15.48254
8 17.06871 16.50254 17.63487
9 14.39845 13.35659 15.44031
10 17.34421 16.73758 17.95084
11 16.56009 16.01692 17.10325
12 17.19586 16.61319 17.77854
13 16.77201 16.22807 17.31595
14 17.38659 16.77226 18.00093
15 15.86073 15.23503 16.48644
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This gives the predictions for each of the original data points, along with and interval in which
the mean prediction lies with 95% confidence (i.e., if we took many many samples and fit a
regression model to each, 95% of so-constructed confidence intervals will include the true mean
of 𝑌 for this value of 𝑋).

This is not to be confused with a “prediction” interval, which is expected to contain 95% of
the actual values of 𝑌 for this value of 𝑋, rather than the mean value. They are thus wider
than confidence intervals.

predict(chm, interval="prediction")

fit lwr upr
1 18.46741 16.18459 20.75023
2 14.86469 12.58499 17.14438
3 19.46346 17.02860 21.89832
4 17.55613 15.35938 19.75289
5 16.77201 14.60384 18.94019
6 15.62762 13.42248 17.83275
7 14.46203 12.12824 16.79582
8 17.06871 14.89485 19.24256
9 14.39845 12.05525 16.74165
10 17.34421 15.15946 19.52896
11 16.56009 14.39210 18.72807
12 17.19586 15.01765 19.37408
13 16.77201 14.60384 18.94019
14 17.38659 15.19970 19.57349
15 15.86073 13.67062 18.05085

The distinction between confidence and prediction intervals

• A 95% confidence interval refers to a mean. It is an interval in which the mean of
Y, for a given value of X, is expected to lie with 95% confidence.

• A 95% prediction interval is an interval in which 95% of Y values are expected to
lie for a given value of X. Prediction intervals are broader than confidence intervals.

Predicting for new data

You can also use the model to make predictions for new values of 𝑋. To do this, first create a
data frame object with a column of the same name as the 𝑋 variable used in the model (i.e.,
degC), and then enter this object as the newdata argument for the predict function.
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newdat <- data.frame(degC = 20:34)
prednew <- predict(chm, newdata = newdat, interval = "confidence")
prednew

fit lwr upr
1 14.10176 12.95828 15.24524
2 14.48322 13.46978 15.49666
3 14.86469 13.97481 15.75457
4 15.24615 14.47024 16.02206
5 15.62762 14.95122 16.30401
6 16.00908 15.41049 16.60767
7 16.39055 15.83880 16.94230
8 16.77201 16.22807 17.31595
9 17.15348 16.57674 17.73022
10 17.53494 16.89096 18.17892
11 17.91641 17.18012 18.65269
12 18.29787 17.45239 19.14335
13 18.67934 17.71348 19.64520
14 19.06080 17.96707 20.15454
15 19.44227 18.21550 20.66903

These correspond to the predicted means and confidence intervals for 𝑌 , for 𝑋 values of 20 to
34.

Plotting confidence intervals

We can automatically plot confidence intervals for a linear fit like so:

ch |>
ggplot() +
aes(degC, chirps) +
geom_point() +
geom_smooth(method = "lm")
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Or with the visreg package.

library(visreg)

visreg(chm, gg=T)
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Note that the mean is most certain (i.e., the interval is tighter) around the centre of the data
and less so around the extremes.

Residual plots

The linear regression model looks like it provides a reasonable fit to the data. We should just
check the residuals though.

ggplot() +
aes(chm$fitted.values, chm$residuals) +
geom_point() +
geom_hline(yintercept = 0)
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Remember, you want a complete mess in your residual plot—no pattern is good pattern. We
generally look for two things: heteroscedasticity and trend. We can see in the plot above that
the residuals appear to have quite a constant variance, so no worries about the heteroscedas-
ticity there. However, there is a hint of a trend—there are more points above zero at low and
high fitted values, and more below the line at middle fitted values. This is not too severe, but
it warrants further consideration.

Using the function plot() on an lm object gives four very useful diagnostic graphs. You can
read about them in the help file by entering the following.

plot(chm)
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Interpreting R’s diagnostic plots

The diagnostic plots are designed to inform the user of any departure from the assump-
tions of a linear model.
The Residuals vs Fitted plot shows the regular residuals, i.e., the difference between
the observed and fitted values on the y-axis plotted against the fitted values on the x-axis.
Ideally, this would show a complete trend-less mess. Here, there is a little curvature on
the plot, which may concern us a little.
The Normal Q-Q plot compares the residuals with their expected values if they were
normally distributed. When lots of points lie away from this line, then there is evidence
that the residuals are non-normally distributed, which violates an assumption of linear
models. Here, they look pretty good. A little departure from the line at the very ends is
common, and no cause for great concern.
The Scale-Location plot shows the square-root of the standardised residuals (i.e. divided
by their standard deviation) against the predicted values. This can be used to look for
heteroscedasticity—changes in the variance of the residuals for different fitted values—
which is also an assumption of linear models. Ideally, there would be no trend in these
points and the red line would be perfectly horizontal. It doesn’t look bad here.
Finally, the Residuals vs Leverage plot shows the standardised residuals against Lever-
age. The leverage measures the potential influence a point has given the extremeness of
its values for the predictor variable. If a point has large leverage and a large residual,
then it will have large influence, meaning that it is having a large effect on the estimated
parameters. So, this plot is useful for identifying outliers and influential points. Any
points that are outside the red dashed lines have high values of Cook’s D reflecting a
large influence on the estimates a and b, and are therefore potentially cause for concern.
So, ideally, there would be no points outside the dashed lines.

The only problem we can see in the diagnostic plots is in the residuals-vs-fitted one, where
there’s a bit of curvature, as identified by the red smoother line. Otherwise, the residuals are
fairly normal (Q-Q) and with constant variance (scale-location).

From the plots above, it looks like there may be little effect of temperature on chirps below,
say, 23 degrees. Let’s fit this model again, this time removing the three data points below this
temperature.

chmsub <- lm(chirps ~ degC, data=ch, subset = degC > 23)

summary(chmsub)

Call:
lm(formula = chirps ~ degC, data = ch, subset = degC > 23)
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Residuals:
Min 1Q Median 3Q Max

-1.05254 -0.60559 -0.05311 0.75837 1.07639

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.86776 2.48526 0.349 0.734
degC 0.57421 0.08821 6.509 6.81e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7998 on 10 degrees of freedom
Multiple R-squared: 0.8091, Adjusted R-squared: 0.79
F-statistic: 42.37 on 1 and 10 DF, p-value: 6.815e-05

We now see that if we exclude those points, thus restricting our model to only those times where
the temperature is greater than 23°C, we now explain 81% of the variation. The estimated
per-degree increase in chirping has gone from 0.38 to 0.57, indicating a much stronger effect.

Let’s have a look at the diagnostic plots.

plot(chmsub)
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The residuals seem to be a bit better behaved now. Certainly the trend identified in the
previous model has disappeared. The smoother lines might look a little wild at first glance,
but this is probably just because the dataset is small. I see no real cause for concern.

Now plot the new model with confidence intervals.

ggplot() +
aes(degC, chirps) +
geom_point(

data = ch,
aes(colour = degC > 23)
) +

geom_smooth(
method = "lm",
data = ch |> filter(degC > 23),
colour = 1
)
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This looks like a much better model overall. Perhaps we can conclude that above approximately
23 degrees, chirping increases linearly with temperature.

It is important to note that subsetting the data in this way changes the inference space to which
the model applies. The chmsub model should not be used to predict chirps for temperatures
less than 23°C (or greater than 34°C, for that matter). A model should only be used
within the range of values spanned by the data used to create it. Beyond this range,
it will very likely be wrong. Our exclusion of the sub-23° data therefore further restricts the
range of values for which this model may be used.
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Dataset Prestige

We will continue to use dataset Prestige from the car R package. ## Linear model

Fit a linear model of prestige against education. Show the fitted line on a scatterplot of
prestige ~ education. Check the assumptions using diagnostic plots.

library(car)
data("Prestige")

lmp <- lm(prestige ~ education, data = Prestige)

summary(lmp)

Call:
lm(formula = prestige ~ education, data = Prestige)

Residuals:
Min 1Q Median 3Q Max

-26.0397 -6.5228 0.6611 6.7430 18.1636

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.732 3.677 -2.919 0.00434 **
education 5.361 0.332 16.148 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.103 on 100 degrees of freedom
Multiple R-squared: 0.7228, Adjusted R-squared: 0.72
F-statistic: 260.8 on 1 and 100 DF, p-value: < 2.2e-16

PrestigeReg <- Prestige |>
mutate(

Residuals = residuals(lmp),
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Fits = fitted(lmp)
)

PrestigeReg |>
ggplot() +
aes(x=education, y=prestige) +
geom_point() +
geom_line(aes(x=education, y=Fits))
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Robust regression

Fit a robust regression using a function in the MASS package.

library(visreg)
library(car)
library(MASS)

rlmp <- rlm(prestige ~ education, data = Prestige)

Plot using the visreg package.

visreg(rlmp)
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Note:

• More R code examples are here
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