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library(tidyverse)
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Elephants

Load the data

Load a dataset on elephants.

ele <- read_table(
"https://www.massey.ac.nz/~anhsmith/data/elephant.txt"
) |>
rename("Height" = `Shoulder.height`) # renames the variable

str(ele)

spc_tbl_ [312 x 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ Sex : chr [1:312] "F" "F" "F" "F" ...
$ Age : num [1:312] 0 0 0 0 0 0 0 0 1 1 ...
$ Height: num [1:312] 79 83 86 90 91 93 96 102 94 96 ...
- attr(*, "spec")=
.. cols(
.. Sex = col_character(),
.. Age = col_double(),
.. Shoulder.height = col_double()
.. )

There are three variables:

• Sex: M or F
• Age: in years
• Height: shoulder height in cm

Explore the distribution of heights

Examine the distribution of the heights.
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ggplot(ele) +
aes(x = Height) +
geom_histogram(

aes(y = after_stat(density)) # this aes goes here because
# it only applies to geom_histogram

) +
geom_density()
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Does that look normally distributed to you? Is it symmetrical and bell-shaped?

We can test whether these data conform to a normal distribution model with a Shipiro-Wilk
test for normality. The null hypothesis is that the data came from a population that is
normal.

shapiro.test(ele$Height)

Shapiro-Wilk normality test

data: ele$Height
W = 0.96785, p-value = 2.043e-06

The very low p-value says that we can reject the null hypothesis, and conclude that these data
are very unlikely to have come from a normal distribution.

The data have both male and female elephants, so we should probably look at the sexes
separately.

ggplot(ele) +
aes(x = Height) +
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geom_histogram(
aes(y = after_stat(density)) # this aes goes here because

# it only applies to geom_histogram
) +

geom_density() +
facet_grid( ~ Sex)

F M

100 150 200 250 100 150 200 250

0.000

0.005

0.010

0.015

Height

de
ns

ity

ggplot(ele) +
aes(x = Height, fill = Sex, colour = Sex) +
geom_density(alpha = .3)
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It doesn’t look like there’s a major difference between the sexes in terms of the distribution of
heights. Males might be a bit more variable than females (seeing the thicker tails).

Have a look at the values of age.

ggplot(ele) + aes(Age) + geom_bar()
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There is a wide range of ages, from 0 to 15 years old. Many elephants (49, to be exact) are
0 or 1 year old. Are the data normal if we remove these? We’ll first make a new copy of the
data with the baby elephants removed and then repeat our tests for normality.

ele2 <- ele |> filter(Age > 1) # make new dataset with babies removed

ggplot(ele2) +
aes(x = Height) +
geom_histogram(

aes(y = after_stat(density))

) +
geom_density()
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That looks a bit more normal.

shapiro.test(ele2$Height)
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Shapiro-Wilk normality test

data: ele2$Height
W = 0.99394, p-value = 0.3726

Of elephants 2 years or older, there is no evidence that the heights do not come from a normal
distribution (W = 1.0, p = 0.37). So, the heights of non-baby elephants appear approximately
normally distributed.

Confidence interval for the sample

Let’s now estimate the population mean (with a 95% confidence interval) of Heights in the
dataset with the baby elephants removed.

t.test(ele2$Height)

One Sample t-test

data: ele2$Height
t = 101.24, df = 262, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
178.0425 185.1058
sample estimates:
mean of x
181.5741

The t.test() function is very flexible. When given a single sample, it will provide the mean
and 95% confidence interval. How would you interpret this confidence interval?

It also provides a test of whether the mean of the sample is significantly different from zero. If
the p-value is less than 0.05, then we can say that there is evidence against the null hypothesis
of a mean of zero. Now, in this case, of course this isn’t useful. Elephants can never have zero
or negative height, so a mean height of zero is nonsensical.

Note that we can extract the estimate of the population mean and its confidence interval in
the following way.

t.test(ele2$Height)$estimate
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mean of x
181.5741

t.test(ele2$Height)$conf.int

[1] 178.0425 185.1058
attr(,"conf.level")
[1] 0.95

How was this confidence interval calculated?

The standard error (the standard deviation over multiple samples) for a sample mean can be
estimated by 𝑠/√𝑛, where 𝑠 is the sample standard deviation and 𝑛 is the sample size.

n = length(ele2$Height)
s = sd(ele2$Height)

( se = s / sqrt(n) )

[1] 1.793566

Once you have estimated the standard error, a confidence interval for a sample mean ̄𝑥 is
simply

̄𝑥 ± 𝑡 × se

The 𝑡 value is the 0.975 quantile of the 𝑡 distribution with the degrees of freedom given by
𝑛 − 1.

qt(p = 0.975, df = n - 1)

[1] 1.96906

So, the sample mean and confidence interval is:

( xbar <- mean(ele2$Height) )

[1] 181.5741
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( xbar - qt(p = 0.975, df = n - 1) * se )

[1] 178.0425

( xbar + qt(p = 0.975, df = n - 1) * se )

[1] 185.1058

t-test for difference of two sample means

Let’s say we are interested in testing whether the mean heights of male and female elephants
are different. First, we can test for differences in the variances in the two sexes using Levene’s
test, which is an important assumption of the t-test. In other words, if the assumption is
violated, the results of the test may be misleading.

Let’s do the Levene’s test.

car::leveneTest(Height ~ Sex, data = ele2)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 2.6478 0.1049
261

A p-value of 0.1 is not huge, but it’s not enough evidence to reject the null hypothesis that
the variance of male heights is equal to the variance of female heights (at the 5% level).

The default option for a t-test using the t.test() function is not not assume equal variances.

t.test(formula = Height ~ Sex, data = ele2)

Welch Two Sample t-test

data: Height by Sex
t = -1.3991, df = 251.38, p-value = 0.163
alternative hypothesis: true difference in means between group F and group M is not equal to 0
95 percent confidence interval:
-12.111371 2.050723
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sample estimates:
mean in group F mean in group M

179.1259 184.1562

By this test, there is no strong evidence against the null hypothesis that the mean heights of
male and female elephants are equal.

Welch Test does not assume equal variances. If we wanted to make this assumption (and
therefore get more power):

t.test(formula = Height ~ Sex, var.equal = T, data = ele2)

Two Sample t-test

data: Height by Sex
t = -1.4044, df = 261, p-value = 0.1614
alternative hypothesis: true difference in means between group F and group M is not equal to 0
95 percent confidence interval:
-12.083154 2.022506
sample estimates:
mean in group F mean in group M

179.1259 184.1562

The result is essentially the same in this case.
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Dataset Prestige

We will again be using a well-known dataset called Prestige from the car R package. This
dataset deals with prestige ratings of Canadian Occupations. The Prestige dataset has 102
rows and 6 columns. The observations are occupations.

This data frame contains the following columns:

• education - Average education of occupational incumbents, years, in 1971.

• income - Average income of incumbents, dollars, in 1971.

• women - Percentage of incumbents who are women.

• prestige - Pineo-Porter prestige score for occupation, from a social survey conducted
in the mid-1960s.

• census - Canadian Census occupational code.

• type - Type of occupation. A factor with levels: bc, Blue Collar; prof, Professional,
Managerial, and Technical; wc, White Collar. (includes four missing values).

One-sample t-tests

Perform a one-sample t-test to test the hypothesis that the true mean prestige is exactly
50.

library(tidyverse)
library(car)
data(Prestige)

# Alternative hyp: greater or less than 50
t.test(Prestige$prestige, mu=50)

# Alternative hyp: greater than 50
t.test(Prestige$prestige, mu=50, alternative="greater")

Test whether the true mean prestige score for professionals is 50% more than the true mean
prestige score for white collar occupations.
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prof.data <- Prestige |>
filter(type=="prof") |>
pull(prestige)

wc.data <- Prestige |>
filter(type=="wc") |>
pull(prestige)

t.test(prof.data,
wc.data,
mu = 0.5 * mean(wc.data),
alternative = 'greater')

Skewness

Explore the skewness in the income variable using a boxplot.

Prestige |>
ggplot() +
aes(income) +
geom_boxplot()

# or
boxplot(Prestige$income, horizontal = TRUE)

Transformation

Find a suitable power transformation to correct the skewness.

library(lindia)

gg_boxcox(lm(income ~ 1, data = Prestige))
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Confidence interval

Compute the 95% confidence interval for the true mean income using the raw and log-
transformed data.

t.test(Prestige$income)
t.test(log(Prestige$income))

More R code examples are here
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