Chapter 2 Workshop

Table of contents

Setting up a Quarto project	3
Dataset Prestige	9
Exercise 2.1	10
Exercise 2.2	13
Exercise 2.3	18
Exercise 2.4	21
Exercise 2.5	22
Exercise 2.6	23
Exercise 2.7	24
Exercise 2.8	25
Exercise 2.9	27
Exercise 2.10	34
Exercise 2.11	36

Setting up a Quarto project

It is a good idea to get into the habit of using Quarto projects, rather than just R scripts. Here is a step-by-step guide to creating a project for your workshops. You don't have to use projects, but they are very useful.

1. Open RStudio. (Optional: click on the little window symbol at the top and select "Console on Right")

- 2. If you haven't already, make a directory on your computer where you want to keep your code for this course.
- 3. Make a new project. Select the "Project" button at the top-right of Rstudio, and select "New Project...".

- 4. In the pop-up window:
- Select "New Directory"

 New Project Wizard

 Create Project

 Image: Register of the project with an existing working directory
 >

 Image: Register of the project with an existing working directory
 >

 Image: Register of the project of the project of the project of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 >

 Image: Register of the project from a version control repository
 Cancel

• Select "Quarto Project"

New Project Wizard		
Back	Project Type	
Rew Project		> 1
🕡 R Package		>
R Shiny Application		>
횓 Quarto Project		>
🕒 Quarto Website		>
剩 Quarto Blog		>
🚊 Quarto Book		>
		Cancel

• Choose your directory via the "Browse", and then give the project a name like "161250_workshops"

New Project Wizard		
Back	Create Quarto Project	
	Directory name:	
	161250_workshops	
	Create project as subdirectory of:	
	C:/Users/anhsmith/OneDrive/Work/git_projects Browse	
	Engine: Knitr 🗸	
	Create a git repository	
	Use renv with this project	
	Use visual markdown editor (?)	
Open in new sess	ion Create Project Cancel	

• Finish by clicking on "Create Project".

The project should now be created, and you'll likely have an open *.qmd file (something like "161250_workshops.qmd") in the top-right window of Rstudio. We want to make a *.qmd file for this workshop.

5. Right-click on the qmd tab and select "Rename", and rename it "workshop2.qmd" or something similar. (Alternatively, just make a new file via the menus: *File* > *New File* > *Quarto Document.*)

Now you have a document for your Workshop 2 work. You can:

- Write headings with lines beginning with "#".
- Write text in the main part of the document.
- Make a code chunk for your R code using Ctrl-Alt-i. Write R code in the code chunks.

Like so:

```
# Heading
normal text
```{r}
this is a code chunk -- R code goes here
....
```

There are lots of tutorials online covering the basics of Quarto, and we'll discuss them during our own workshops. Here are a couple for starters:

https://quarto.org/docs/get-started/hello/rstudio.html

https://www.youtube.com/watch?v=c654j7aQjcg

There are many advantages of Quarto projects. One is that you can put datasets into the project folder, and they'll be easily accessible within your project, without having to worry about file paths.

You can easily open a recent past projects via the "Projects" button on the top-right of Rstudio.

#### Dataset Prestige

As you work through this workshop, you can copy the code and paste it into a code chunk. Write notes and observations to your self as you go.

We will be using a well-known dataset called **Prestige** from the **car** R package. This dataset deals with prestige ratings of Canadian occupations. The **Prestige** dataset has 102 rows and 6 columns. Each row (or 'observation') is an occupation.

This data frame contains the following columns:

- education Average education of occupational incumbents, years, in 1971.
- income Average income of incumbents, dollars, in 1971.
- women Percentage of incumbents who are women.
- **prestige** Pineo-Porter prestige score for occupation, from a social survey conducted in the mid-1960s.
- census Canadian Census occupational code.
- type Type of occupation. A factor with levels: bc, Blue Collar; prof, Professional, Managerial, and Technical; wc, White Collar. (includes four missing values).

First we'll load the data. The dataset sits in the car package, so you need to load the car package first.

```
library(car)
data(Prestige)
```

Draw a bar chart for type. These plots show the count or relative frequency of blue collar (bc), professional (prof), and white collar (wc) professions in the dataset.

```
library(tidyverse)
p <- Prestige |>
 ggplot() +
 aes(type) +
 geom_bar()
p
```

Or with plotly (which works for HTML, not for PDF)

```
library(plotly)
ggplotly(p)
```



Or with old-style R plot

# or library(car) barplot(table(Prestige\$type))

Draw a histogram of prestige.

Below demonstrates the flexibility of ggplot code. You can specify the data argument by piping it into ggplot, or by putting it as an argument to ggplot or a geom\_. Likewise, the mapping or aes information, which determines which variables are used where, can be added as an extra line or specified inside the ggplot or geom\_ function.

```
Prestige |>
 ggplot() +
 aes(x = prestige) +
 geom_histogram()
```

Now, this histogram, where the number of bins has been chosen for us, looks a bit "spiky" to my eye. You can control the number of bins by adding an argument bins = 10.

```
Prestige |>
 ggplot() +
 aes(x = prestige) +
 geom_histogram(bins=10)
```

ggplot is very flexible as to where you put the data and the **aes** information; all of these methods give the same result.

```
Prestige |>
 ggplot() +
 aes(x = prestige) +
 geom_histogram(bins=10)

ggplot(
 data = Prestige,
 mapping = aes(x = prestige)
) +
 geom_histogram(bins=10)
```

```
ggplot(Prestige) +
 aes(x = prestige) +
 geom_histogram(bins=10)
ggplot() +
 geom_histogram(
 data = Prestige,
 mapping = aes(x = prestige),
 bins = 10
)
or
library(plotly)
p <- Prestige |>
#
 ggplot() +
 aes(prestige) +
#
#
 geom_histogram(bins=10)
#
ggplotly(p)
or
hist(Prestige$prestige)
```

Now let's display the prestige scores for each profession as a dot plot.

Note that I'm including the code-chunk option #| fig-height: 12 at the beginning of my code chunk so that the plot is big enough to show all the professions without overlap.

```
Prestige |>
 ggplot() +
 aes(x = rownames(Prestige), y = prestige) +
 geom_point() +
 coord_flip()
```



What a mess!

We can tidy it up by ordering the professions on the plot according to prestige. First, we move the professions from rownames to a variable. Then, we fct\_reorder the professions using the prestige scores. Then, the resulting data gets piped into ggplot.

```
Prestige |>
 rownames_to_column(var = "profession") |>
 mutate(
 profession = fct_reorder(profession, prestige)
) |>
 ggplot() +
 aes(x = profession, y = prestige, colour = type) +
 geom_point() +
 coord_flip()
```



Obtain some summary statistics for prestige. There are a few options for this.

summary(Prestige)

education	income	women	prestige
Min. : 6.380	Min. : 611	Min. : 0.000	Min. :14.80
1st Qu.: 8.445	1st Qu.: 4106	1st Qu.: 3.592	1st Qu.:35.23
Median :10.540	Median : 5930	Median :13.600	Median :43.60
Mean :10.738	Mean : 6798	Mean :28.979	Mean :46.83
3rd Qu.:12.648	3rd Qu.: 8187	3rd Qu.:52.203	3rd Qu.:59.27
Max. :15.970	Max. :25879	Max. :97.510	Max. :87.20
census	type		
Min. :1113	bc :44		
1st Qu.:3120	prof:31		
Median :5135	wc :23		
Mean :5402	NA's: 4		
3rd Qu.:8312			
Max. :9517			

library(psych)

describe(Prestige)

	vars	n	mean	sd	median	trimmed	mad	min	max
education	1	102	10.74	2.73	10.54	10.63	3.15	6.38	15.97
income	2	102	6797.90	4245.92	5930.50	6161.49	3060.83	611.00	25879.00
women	3	102	28.98	31.72	13.60	24.74	18.73	0.00	97.51
prestige	4	102	46.83	17.20	43.60	46.20	19.20	14.80	87.20
census	5	102	5401.77	2644.99	5135.00	5393.87	4097.91	1113.00	9517.00
type*	6	98	1.79	0.80	2.00	1.74	1.48	1.00	3.00
	ra	ange	skew ku	rtosis	se				
education	9	9.59	0.32	-1.03	0.27				
income	25268	3.00	2.13	6.29 43	20.41				

```
97.51 0.90
 -0.68
 3.14
women
prestige
 72.40 0.33
 -0.79
 1.70
 8404.00 0.11
census
 -1.49 261.89
type*
 2.00 0.40
 -1.36
 0.08
 describeBy(education + income + women + prestige ~ type,
 data = Prestige)
Descriptive statistics by group
type: bc
 vars n
 mean
 sd median trimmed
 mad
 min
 max
education
 1 44
 8.36
 1.16
 8.35
 8.32
 1.14
 6.38
 10.93
 2 44 5374.14 2004.33 5216.50 5338.56 2275.05 1656.00 8895.00
income
 4.72
 7.01
women
 3 44
 18.97
 26.15
 14.48
 0.00
 90.67
 4 44
 35.53
 10.02
 35.90
 35.46
 11.34
 17.30
 54.90
prestige
 range skew kurtosis
 se
 4.55 0.34
 -0.76
education
 0.18
 7239.00 0.17
 -1.00 302.16
income
women
 90.67 1.36
 0.51
 3.94
prestige
 37.60 0.05
 -1.03
 1.51

type: prof
 sd median trimmed
 vars n
 mean
 mad
 min
 max
 1 31
 14.08
 14.44
 14.16
 1.22
 11.09
 15.97
education
 1.39
income
 2 31 10559.45 5422.82 8865.00 9700.04 3955.58 4614.00 25879.00
 3 31
 25.51
 28.37
 11.68
 21.03
women
 13.86
 0.58
 96.12
 67.34
 4 31
 67.85
 8.68
 68.40
 9.19
 53.80
 87.20
prestige
 range skew kurtosis
 se
 4.88 -0.47
 -0.93
education
 0.25
income
 21265.00 1.37
 1.36 973.97
 95.54 1.14
 -0.04
 5.09
women
 33.40 0.36
 -0.67
 1.56
prestige

type: wc
 sd median trimmed
 vars n
 mean
 mad
 min
 max
education
 1 23
 11.02
 0.92
 11.13
 11.03
 0.68
 9.17
 12.79
 2 23 5052.30 1944.32 4741.00 4960.53 2342.51 2448.00 8780.00
income
women
 3 23
 52.83
 33.11
 56.10
 53.19
 47.77
 3.16
 97.51
 4 23
 42.24
 9.52
 41.50
 41.61
 8.60
 26.50
 67.50
prestige
 range skew kurtosis
 se
 3.62 -0.20
education
 -0.27
 0.19
```

income	6332.00	0.44	-1.18	405.42
women	94.35	-0.10	-1.58	6.90
prestige	41.00	0.63	0.18	1.98

```
Make a boxplot of prestige ~ type:
```

```
Prestige |>
 ggplot() +
 aes(y=prestige, x=type) +
 geom_boxplot()
or
library(plotly)
p <- Prestige |> ggplot() +
aes(y=prestige, x=type) + geom_boxplot()
ggplotly(p)
or
library(lattice)
bwplot(prestige ~ type, data=Prestige)
as violin plots
Prestige |>
 ggplot() +
 aes(y=prestige, x=type) +
 geom_violin()
Or put it all together
Prestige |>
 ggplot() +
 aes(y=prestige, x=type) +
 geom_violin() +
 geom_boxplot(col = 2, alpha = .2) +
 geom_jitter(alpha = .2, width = .2, height = 0, colour = 4)
```

Obtain the Empirical Cumulative Distribution Function (ECDF) graphs of prestige ~ type:

```
Prestige |>
 ggplot() +
 aes(prestige, colour=type) +
 stat_ecdf()
Prestige |>
 ggplot() +
 aes(prestige) +
 stat_ecdf() +
 facet_wrap(~type)
Prestige |>
 ggplot() +
 aes(
 x = prestige, # these aes settings are used
 col = type # by both geoms
) +
 geom_density(
 aes(fill = type), # the 'fill' aes goes here because
 alpha = .2 # geom_rug doesn't use 'fill'
) +
 geom_rug()
```

With which plot – the ECDF or the density plot – is it easier to compare the distributions of prestige scores among these groups?

Obtain the {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} quantiles of prestige:

```
pr <- c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99)
Prestige |>
 summarise(
 probs = pr,
 quants = quantile(prestige, pr)
)
or simply
quantile(Prestige$prestige, pr)
```

Obtain the scatter plot (with and without marginal boxplots) prestige vs. education :

```
library(ggExtra)
p1 <- Prestige |>
 ggplot() +
 aes(x = education, y = prestige) +
 geom_point() +
 geom_smooth(col = 2) +
 geom_smooth(method = "lm", se = FALSE)
ggMarginal(p1, type="boxplot")
library(car)
scatterplot(education ~ prestige, data = Prestige)
```

The later plot will show prediction interval ribbon while the first plot will show the confidence interval ribbon.

Obtain the bubble or balloon plot **prestige vs. education vs. income** (income forming the bubble size):

```
library(ggplot2)
Prestige |>
 ggplot() +
 aes(x = education, y = prestige, size = income) +
 geom_point()
or
library(plotly)
p <- Prestige |>
 ggplot() +
 aes(x = education, y = prestige, size = income) +
 geom_point()
ggplotly(p)
```



Obtain the contour plot prestige vs. education vs. income :

```
library(plotly)
plot_ly(type = 'contour',
 x = Prestige$education,
 y = Prestige$income,
 z = Prestige$prestige)
```



To add axes labels and titles, try-

```
plot_ly(
 Prestige,
 type = 'contour',
 x = Prestige$education,
 y = Prestige$income,
 z = Prestige$prestige
) |> layout(
 title = 'Contour Plot of prestige scores',
 xaxis = list(title = 'education'),
 yaxis = list(title = 'income')
)
```

Contour Plot of prestige scores



We can also define our own function for the contour approximation.

```
library(modelr)
make a smooth model
y.m = loess(prestige ~ education * income, data = Prestige)
make a regular grid of all combinations of education and income
mygrid <- Prestige |>
 data_grid(
 education = seq_range(education, 50),
 income = seq_range(income, 50)
) |>
 # add predicted prestige using the smooth model
 add_predictions(y.m, var = "predicted prestige")
make ggplot contour plot
p <- mygrid |>
 ggplot() +
 aes(x = education, y = income, z = `predicted prestige`) +
 geom_contour()
р
make a plotly version
library(plotly)
ggplotly(p)
```



```
filled contour ggplot
mygrid |>
 ggplot() +
 aes(x=education, y=income, z=`predicted prestige`) +
 stat_contour_filled()
or the older-style lattice graphs
library(lattice)
contourplot(`predicted prestige` ~ education * income,
 data = mygrid,
 cuts = 10, region = TRUE,
 xlab = "education ", ylab = "income ")
wireframe(`predicted prestige` ~ education * income,
 data = mygrid,
 cuts = 10, region = TRUE,
 xlab = "education ", ylab = "income ")
levelplot(`predicted prestige` ~ education * income,
 data = mygrid,
 cuts = 10, region = TRUE,
 xlab = "education ", ylab = "income ")
cloud(`predicted prestige` ~ income * education,
 data = mygrid)
```

Obtain an interactive 3-D plot of **prestige vs. education vs. income** using plotly.

```
plot_ly(
 data = Prestige,
 x = ~education,
 y = ~income,
 z = ~prestige) |>
 add_markers()
```

Create prestige ~ education | type graphs. That is, prestige ~ education grouped by type as colours and/or panels.

```
Prestige |>
 ggplot() +
 aes(x = education, y = prestige, colour = type) +
 geom_point() +
 facet_wrap(~ type)
or
library(plotly)
#
p <- Prestige |>
ggplot() +
 aes(x = education, y = prestige, color = type) +
#
#
 geom_point() +
#
 facet_wrap(~ type)
#
ggplotly(p)
p <- Prestige |>
 ggplot() +
 aes(x = education, y = prestige, color = type) +
 geom_point()
р
OR
#
library(plotly)
ggplotly(p)
```

More graphing examples are here (R code file).