
Getting Started With R

Table of contents

Installing R and RStudio 3

Some R basics 5

Quarto 8

R Projects and GitHub 9

Loading/Importing Data 10

Graphing with ggplot2 13
Grammar of Graphics . 13
Aesthetic Mapping (aes) . 14
Geometric Objects (geom) . 14
ggplot builder . 27

tidyverse and related packages 29
dplyr . 29
Piping . 29
tidyr . 36

A typical data analysis session in R/RStudio 38
Data Quality Checks . 43

Further Help 47

R default (base) Graphing 48

R Objects, Model Syntax etc. 57

2

Installing R and RStudio

In this course, we will be using R https://www.r-project.org/, an open-source (i.e., free) soft-
ware package for data analysis. This software is available for essentially all computing plat-
forms (e.g. Windows, Linux, Unix, Mac) is maintained and developed by a huge community
of users including many of the world’s foremost statisticians.

R is a programming language but you may not be required to do a lot of programming for
your course work. R includes functions which enables us to perform a full range of statistical
analyses.

For installing R software, please visit https://cran.stat.auckland.ac.nz/ and follow
the instructions.

Note that the R software will be sitting in the background in RStudio and you will not be
using the standalone version of R in this course.

RStudio https://www.rstudio.com/products/rstudio/ is an integrated development environ-
ment (IDE) for R. It includes a console and a sophisticated code editor. It also contains tools
for plotting, history, debugging, and management of workspaces and projects. RStudio has
many other features such as authoring HTML, PDF, Word Documents, and slide shows. In
order to download RStudio (Desktop edition, open source), go to

https://www.rstudio.com/products/rstudio/download/

Download the installation file and run it. Note that RStudio must be installed after
installing R.

R/RStudio can also be used using the cloud platform at https://rstudio.cloud/ after creating
a free account but occasionally some of the packages covered in this course may fail to work
in the cloud platform.

If you open RStudio, you will see something similar to the screen shot shown in Figure 1:

RStudio has many options, such as uploading files to a server, creating documents, etc. You
will be using only a few of the options. You will not be using the menus such as Build, Debug,
Profile at all in this course.

You can either type or copy and paste the R codes appearing in this section on to the R Script
window and run them.

3

https://www.r-project.org/
https://cran.stat.auckland.ac.nz/
https://www.rstudio.com/products/rstudio/
https://www.rstudio.com/products/rstudio/download/
https://rstudio.cloud/

Figure 1: An RStudio window

4

Some R basics

• R is case sensitive, so data is not the same as DATA

• <- (read as “gets”) is the assignment operator. That is, you use <- to assign some content
to a variable. The operator = has a slightly different meaning but it can be used in the
same way as <-. In R Studio, press ALT and minus key when you are in the R script
mode (File » New File » R Script).

• Comments are denoted by the # symbol. Anything after a # symbol is ignored by R .

• R coding can be hard to write from scratch. So do not hesitate to adopt R codes written
by others. Search the internet for R code to do what you want to do. The usual copy
and paste trick works!

Working directory

In RStudio, set the working directory under the Session menu. It is a good idea to start your
analysis as a new project in the File menu so that the entire work and data files can be saved
and re-opened easily later on.

R/RStudio as a calculator

In RStudio, use the File » New File » R Script menu to type or copy and paste the commands
and execute them

Type 1+1 to see 2 on the console (or ->Run the code in RStudio).

1+1

[1] 2

Type a=1;b=2;a/b to see 0.5.

a=1;b=2;a/b

[1] 0.5

5

Note that semicolon separates various commands. It is optional to use them as long as you
type the commands one by one as follows:

a=1
b=2
a/b

[1] 0.5

There are many built-in functions. Try the following.

27^3 sqrt(10) round(sqrt(10),2) abs(-4) log(10) exp(10) rnorm(100) mean(rnorm(100))
sd(rnorm(100))

You may wonder what was the base used for log(10). A help on this can be obtained by
placing a question mark (?) before log as ?log or by help(log)

There are a few exceptions. The command ?if wont work but ?"if" will. In other words,
?"log" or help("log") are safer ways of getting help on “built-in” functions.

In RStudio, use the R Editor (menu File > New Script) to type the commands and submit
them (shortcut: CNTRL+R).‘

Default examples

The command example() will produce the available HELP examples, and will work for most
functions. For example, try example(boxplot). You will see many boxplot examples such as
the following:

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

6

A B C D E F

0
5

10
20

spray

co
un

t

There are also demos available, explore using the command demo(). The basic R system
produces somewhat old style graphs.

So we will be largely using the newer plotting system ggplot which is part of the tidyverse
suite of packages; see https://www.tidyverse.org/.

Let’s load that package now:

library(tidyverse)

A huge number of other dedicated packages are available to improve the power of R. Many R
packages are hosted at a repository called CRAN (Comprehensive R Archive Network). The
package install option within RStudio can download and install these optional packages under
the menu Packages >> Install. You can also do this using the command install.packages.
For example

install.packages(c("tidyverse", "car"), dependencies = TRUE)

This command installs two packages tidyverse and car in one go.

Contributed R packages are grouped in various headings at https://cran.r-project.org/web/
views/. They can be installed in bulk using the ctv package command install.views().

You might have to install quite a few packages as you work through this course.

7

https://www.tidyverse.org/
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

Quarto

I encourage you to get into the habit of using Quarto *.qmd files rather than raw *.R files.
Heard of Rmarkdown? Well, Quarto is the successor to Rmarkdown. So, if you’re just starting
to use R, then you should begin with Quarto rather than Rmarkdown, because most/all new
development will be going into Quarto.

Quarto files contain text and code, and can be ‘knitted’ to produce a nicely formatted doc-
ument, usually in HTML or PDF format, containing sections, text, code, plots, and output.
Quarto can also be used to make websites; in fact, the website for this course was made using
Quarto.

Here’s some information to get you started: https://quarto.org/docs/get-started/hello/
rstudio.html.

And some other useful tips: https://r4ds.hadley.nz/quarto.

8

https://quarto.org/
https://quarto.org/docs/get-started/hello/rstudio.html
https://quarto.org/docs/get-started/hello/rstudio.html
https://r4ds.hadley.nz/quarto

R Projects and GitHub

Instead of putting your R code into an ordinary directory on your computer, I encourage you
to use Rstudio Projects. A Project is a self-contained directory of code and data, pertaining
to a particular project. You might create a single project for your work during this course,
with a folder for workshops and another folder for assignments.

Here’s a primer on R projects: https://r4ds.hadley.nz/workflow-scripts#projects

An advantage of Projects is that they work nicely with GitHub, a cloud code-repository service.
If you plan to do any programming during your career, you’ll probably need to learn how to
use GitHub. It can be a little tricky to use at first. You don’t have to use it for this course,
but feel free to have a go at it if you’re interested.

If you’re using R projects and GitHub, this online book is a great place to start: Happy Git
and GitHub for the useR.

9

https://r4ds.hadley.nz/workflow-scripts#projects
https://github.com/
https://happygitwithr.com/
https://happygitwithr.com/

Loading/Importing Data

Most data sets we shall consider in this course are in a tabular form. This means that each
variable is a column, each row is an observation, columns are separated by white space (or
comma), and each column or row may have a name.

If the data file is stored locally, you should put the data into the same directory as your Quarto
or R markdown script. That way, you can (usually) load it easily without having to type the full
pathway (e.g., mydata.csv rather than C:/Users/anhsmith/Work/Project1/data/mydata.csv).
Better yet, Projects make this much easier.

You can also load data from the web using a URL. For example,

read_csv("https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv")

Rows: 33 Columns: 10
-- Column specification --
Delimiter: ","
dbl (10): id, loc, time, w.e, cl, wind, temp, river, people, vehicle

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 33 x 10
id loc time w.e cl wind temp river people vehicle

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 2 1 1 2 2 1 37 15
2 2 1 1 1 1 2 1 2 23 6
3 3 1 2 1 1 2 2 3 87 31
4 4 2 2 1 1 2 1 1 86 27
5 5 2 1 1 1 2 2 2 19 2
6 6 2 2 1 2 1 3 3 136 23
7 7 1 2 2 2 2 2 3 14 8
8 8 1 2 1 2 2 2 3 67 26
9 9 1 1 2 1 3 1 2 4 3
10 10 2 2 1 2 2 2 3 127 45
i 23 more rows

10

https://r4ds.hadley.nz/workflow-scripts#projects

We’d usually want to store the data as an object though, like so:

rangitikei <- read_csv("https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv")

Rows: 33 Columns: 10
-- Column specification --
Delimiter: ","
dbl (10): id, loc, time, w.e, cl, wind, temp, river, people, vehicle

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Now the data are available in R as an object.

glimpse(rangitikei)

Rows: 33
Columns: 10
$ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,~
$ loc <dbl> 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1,~
$ time <dbl> 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2,~
$ w.e <dbl> 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2,~
$ cl <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2,~
$ wind <dbl> 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2,~
$ temp <dbl> 2, 1, 2, 1, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 2,~
$ river <dbl> 1, 2, 3, 1, 2, 3, 3, 3, 2, 3, 1, 3, 1, 3, 1, 1, 2, 1, 2, 2, 3,~
$ people <dbl> 37, 23, 87, 86, 19, 136, 14, 67, 4, 127, 43, 190, 50, 47, 32, ~
$ vehicle <dbl> 15, 6, 31, 27, 2, 23, 8, 26, 3, 45, 7, 53, 22, 18, 10, 3, 11, ~

If the data are stored as a *.csv or “comma separated values” file, then you can use the
read.csv() or read_csv() function to load the file. If it’s a text file with columns separated
by spaces or tabs, you can use read.table() or read_table() function. The ones with
underscores (read_csv() and read_table()) are in the readr package, so you’ll need to
load it first (though readr is part of tidyverse, so if you load tidyverse you’re all set).

You can also load Microsoft Excel files using functions read_excel(), available in the readxl
package.

As an exercise, try importing the Telomeres data file (in Excel format) available at

https://rs.figshare.com/ndownloader/files/22850096

11

https://rs.figshare.com/ndownloader/files/22850096

Note that Excel files usually contain blanks for missing or unreported data or allocate many
rows for variable description, which can cause issues while importing them.

Native R data, stored as *.RData or *.rds files, can be loaded using the load() or readRDS()
functions, respectively.

SQLite is a public-domain, light-weight database engine (https://sqlite.org/about.html). The
R package RSQLite will import *.sqlite files. Databases are usually large in size, and hence R
packages such as dbplyr can be used package to query a database.

12

Graphing with ggplot2

The R library ggplot2 is very powerful for plotting but you may find the syntax little strange.
There are plenty of examples at the ggplot2 online help website. The ggplot2 package is
loaded as part of the tidyverse set of packages.

Advantages of ggplot2 are the following:

• employs the “grammar of graphics” of [1]
• plotting involves a high level of abstraction
• very flexible and complete graphics system
• theme system for getting attractive plots
• Fast growing and actively developed

Some disadvantages of ggplot2 are the following:

• 3-dimensional graphics (opt for rgl package instead)
• Graph-theory type graphs (nodes/edges layout; opt for igraph and other packages)
• Interactive graphics (opt for plotly, ggvis and other packages)

Grammar of Graphics

The main idea behind the grammar of graphics of [1] is to mimic the manual graphing approach
and define building blocks and combine them to create a graphical display. The building blocks
of a graph are:

• data
• aesthetic mapping
• geometric object
• transformation or re-expression of data
• scales
• coordinate system
• position adjustments
• faceting

If have not installed ggplot2 or tidyverse, install it with the following commands.

13

https://ggplot2.tidyverse.org/reference/

install.packages("ggplot2")

We can now load the ggplot2 library with the commands:

library(ggplot2)

In order to work with ggplot2, we must have a data frame or a tibble containing our data.
We need to specify the aesthetics or how the columns of our data frame can be translated
into positions, colours, sizes, and shapes of graphical elements.

The geometric objects and aesthetics of the ggplot2 system are explained below:

Aesthetic Mapping (aes)

In ggplot land aesthetic means visualisation features or aesthetics. These are

• position (i.e., on the x and y axes)
• color (“outside” color)
• fill (“inside” color)
• shape (of points)
• linetype
• size

Aesthetic mappings are set with the aes() function.

Geometric Objects (geom)

Geometric objects or geoms are the actual marking or inking on a plot such as:

• points (geom_point, for scatter plots, dot plots, etc)
• lines (geom_line, for time series, trend lines, etc)
• boxplot (geom_boxplot, for boxplots)

A plot must have at least one geom but there is no upper limit. In order to add a geom to
a plot, the + operator is employed. A list of available geometric objects can be obtained by
typing geom_<tab> in Rstudio. The following command can also be used which will open a
Help window.

help.search("geom_", package = "ggplot2")

14

Consider the study guide dataset rangitikei.txt (Recreational Use of the Rangitikei river).
The first 10 rows of this dataset are shown below:

id loc time w.e cl wind temp river people vehicle
1 1 1 2 1 1 2 2 1 37 15
2 2 1 1 1 1 2 1 2 23 6
3 3 1 2 1 1 2 2 3 87 31
4 4 2 2 1 1 2 1 1 86 27
5 5 2 1 1 1 2 2 2 19 2
6 6 2 2 1 2 1 3 3 136 23
7 7 1 2 2 2 2 2 3 14 8
8 8 1 2 1 2 2 2 3 67 26
9 9 1 1 2 1 3 1 2 4 3
10 10 2 2 1 2 2 2 3 127 45

The description of the variables is given below:

loc - two locations were surveyed, coded 1, 2
time - time of day, 1 for morning, 2 for afternoon
w.e - coded 1 for weekend, 2 for weekday
cl- cloud cover, 1 for >50%, 2 for <50%
wind- coded 1 through 4 for increasing wind speed
temp - temperature, 1, 2 or 3 increasing temp
river- murkiness of river in 3 increasing categories
people - number of people at that location and time
vehicle- number of vehicles at that location at that time

This dataset is downloaded from the web using the following commands.

my.data <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv",
header=TRUE
)

ggplot(data = my.data,
mapping = aes(x = vehicle, y = people)
) +

geom_point()

15

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

The aes part defines the “aesthetics”, which is how columns of the dataframe map to graphical
attributes such as x and y position, colour, size, etc. An aesthetic can be either numeric or
categorical and an appropriate scale will be used. After this, we add layers of graphics.
geom_point layer is employed to map x and y and we need not specify all the options for
geom_point.

The aes() can be specified within the ggplot function or as its own separate function. I
prefer this format.

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point()

16

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

We can add a title using labs() or ggtitle() functions. Try-

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point() +
ggtitle("No. of people vs No. of vehicles")

or

ggplot(my.data)+
aes(x = vehicle, y = people) +
geom_point() +
labs(title = "No. of people vs No. of vehicles")

Note that labs() allows captions and subtitles.

geom_smooth is additionally used to show trends.

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point() +
geom_smooth()

17

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

0

100

200

300

400

500

0 25 50 75 100 125
vehicle

pe
op

le

Similar to geom_smooth, a variety of geoms are available.

ggplot(my.data) +
aes(x = factor(wind), y = people) +
geom_boxplot()

18

0

100

200

300

400

1 2 3
factor(wind)

pe
op

le

Each geom accepts a particular set of mappings;for example geom_text() accepts a labels
mapping. Try-

ggplot(my.data) +
aes(x = vehicle, y = people) +
geom_point() +
geom_text(aes(label = w.e),

size = 5)

The faceting option allows a collection of small plots with the same scales. Try-

ggplot(my.data) +
aes(x=vehicle, y=people) +
geom_point() +
facet_wrap(~ river)

19

1 2 3

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

0

100

200

300

400

vehicle

pe
op

le

Faceting is the ggplot2 option to create separate graphs for subsets of data. ggplot2 offers
two functions for creating small multiples:

1. facet_wrap(): define subsets as the levels of a single grouping variable
2. facet_grid(): define subsets as the crossing of two grouping variables

The following arguments are common to most scales in ggplot2:

• name: the first argument gives the axis or legend title
• limits: the minimum and maximum of the scale
• breaks: the points along the scale where labels should appear
• labels: the labels that appear at each break

Specific scale functions may have additional arguments. Some of the available Scales are:

Scale Examples
scale_color_ scale_color_discrete
scale_fill_ scale_fill_continuous
scale_size_ scale_size_manual

scale_size_discrete

scale_shape_ scale_shape_discrete
scale_shape_manual

20

Scale Examples
scale_linetype_ scale_linetype_discrete

scale_x_ scale_x_continuous
scale_x_log
scale_x_date

scale_y_ scale_y_reverse
scale_y_discrete
scale_y_datetime

In RStudio, we can type scale_ followed by TAB to get the whole list of available scales.

Try-

ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point() +
scale_x_continuous(name = "No. of Vehicles") +
scale_y_continuous(name = "No. of people") +
scale_color_discrete(name = "Temperature")

0

100

200

300

400

0 25 50 75 100 125
No. of Vehicles

N
o.

 o
f p

eo
pl

e Temperature

1

2

3

21

The other coding option is shown below:

ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point() +
xlab("No. of Vehicles") +
ylab("No. of people") +
labs(colour="Temperature")

Note that a desired graph can be obtained in more than one way.

The ggplot2 theme system handles plot elements (not data based) such as

• Axis labels
• Plot background
• Facet label background
• Legend appearance

Built-in themes include:

• theme_gray() (default)
• theme_bw()
• theme_minimal()
• theme_classic()

p1 <- ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point()

Note that the graph is assigned an object name p1 and nothing will be printed unless we then
print the object p1.

p1 <- ggplot(my.data) +
aes(x = vehicle, y = people, color = factor(temp)) +
geom_point()

p1

22

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

Try-

p1 + theme_light()

23

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

p1 + theme_bw()

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

24

Specific theme elements can be overridden using theme(). For example:

p1 + theme_minimal() +
theme(text = element_text(color = "red"))

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

factor(temp)

1

2

3

All theme options can be seen with ?theme.

To specify a theme for a whole document, use

theme_set(theme_minimal())

Minimal graphing can be done using the qplot option that will produce a few standard for-
matted graphs quickly.

qplot(people, vehicle, data = my.data, colour = river)

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

25

0

25

50

75

100

125

0 100 200 300 400
people

ve
hi

cl
e

1.0

1.5

2.0

2.5

3.0
river

Try-

qplot(people, data = my.data)

qplot(people, fill=factor(river), data=my.data)

qplot(people, data = my.data, geom = "dotplot")

qplot(factor(river), people, data = my.data, geom = "boxplot")

A cheat sheet for ggplot2 is available at https://www.rstudio.com/resources/cheatsheets/
(optional to download). There are many other packages which incorporate ggplot2 based
graphs or dependent on it.

The library patchwork allows complex composition arbitrary plots, which are not produced
using the faceting option. Try

library(patchwork)

p1 <- qplot(people, data = my.data, geom = "dotplot")
p2 <- qplot(people, data = my.data, geom = "boxplot")
p3 <- ggplot(my.data, aes(x = vehicle, y = people)) + geom_point()

(p1 + p2) / p3 +
plot_annotation("My title", caption = "My caption")

26

https://www.rstudio.com/resources/cheatsheets/

Bin width defaults to 1/30 of the range of the data. Pick better value with
`binwidth`.

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
people

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300 400
people

0

100

200

300

400

0 25 50 75 100 125
vehicle

pe
op

le

My caption

My title

ggplot builder

A nice R package, known as esquisse is available to build few simple ggplot graphics inter-
actively. This may help in the early stages of learning to use ggplot graphing.

If this package is not installed, install it first & then try.

library(esquisse)
options("esquisse.display.mode" = "browser")
esquisse::esquisser(data = iris)

You can also load the desired dataset within R studio and select the dataset.

The other option is to load a dataset from the course data web folder and then launch esquisse.
Try-

27

url1 <- "https://www.massey.ac.nz/~anhsmith/data/rangitikei.RData"
download.file(url = url1, destfile = "rangitikei.RData")
load("rangitikei.RData")
esquisse::esquisser(data = rangitikei, viewer = "browser")

You can also download the associated R codes or save the graph within the esquisse web
app.

28

tidyverse and related packages

In the recent years, tidyverse suite of packages, which includes ggplot2 has become the pop-
ular tool for data handling and plotting. In this section, a brief intro to the data management
packages such as dplyr is given.

For detailed coverage of the tidyverse system, go to https://www.tidyverse.org/.

dplyr

The following six functions of dplyr are very useful for data wrangling :

• For selecting columns, use select()
• For subsetting data, use filter()
• For re-ordering (e.g. ascending/descending), use arrange()
• For augmenting new calculated columns, use mutate()
• For computing summary measures, use summarise()
• For group-wise computations (e.g. summary measures), use group_by()

There are many other functions such as transmute() which will add newly calculated columns
to the existing data frame but drop all unused columns. The across() function extends
group_by() and summarise() functions for multiple column and function summaries. For
example, you like to report rounded data in a table, which calls for an operation across both
rows and columns.

Piping

Tip

The piping operation is a fundamental aspect of computer programming. The
semantics of pipes is taking the output from the left-hand side and passing it
as input to the right-hand side.

29

https://www.tidyverse.org/

The R package magrittr introduced the pipe operator %>% and can be pronounced as “then”.
In RStudio windows/Linux versions, press Ctrl+Shift+M to insert the pipe operator. On a
Mac, use Cmd+Shift+M.

R also has its own pipe, |>, which is an alternative to %>%. I tend to use |>. If you want to
change the pipe inserted automatically with Ctrl+Shift+M, find on the menu Tools > Global
Options, then click on Code and check the box that says “Use Native Pipe Operator”.

We often pipe the dplyr functions, and the advantage is that we show the flow of data manip-
ulation and subsequent graphing. This approach also helps to save memory, and dataframes
are not unnecessarily created, a necessity for a big data framework.

Try the following examples after loading the rangitikei dataset.

select()

my.data <- read.csv("https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv", header=TRUE)

names(my.data)

[1] "id" "loc" "time" "w.e" "cl" "wind" "temp"
[8] "river" "people" "vehicle"

library(tidyverse)

new.data <- my.data |>
select(people, vehicle)

names(new.data)

[1] "people" "vehicle"

my.data |>
select(people, vehicle) |>
ggplot() +
aes(x=people, y=vehicle) +
geom_point()

30

0

25

50

75

100

125

0 100 200 300 400
people

ve
hi

cl
e

We select two columns and create a scatter plot with the above commands.

filter()

my.data |>
filter(wind==1) |>
select(people, vehicle) |>
ggplot() +
aes(x=people, y=vehicle) +
geom_point()

31

25

50

75

100

125

0 100 200 300 400
people

ve
hi

cl
e

The above commands filter the data for the low wind days and plots vehicle against people.

arrange()

my.data |>
filter(wind==1) |>
arrange(w.e) |>
select(w.e, people, vehicle)

w.e people vehicle
1 1 136 23
2 1 50 22
3 1 100 31
4 1 470 122
5 2 22 11

mutate()

Assume that a $10 levy is collected for each vehicle. We can create this new levy column as
follows.

32

my.data |>
mutate(levy = vehicle*10) |>
select(people, levy) |>
ggplot() +
aes(x = people, y=levy) +
geom_point()

0

250

500

750

1000

1250

0 100 200 300 400
people

le
vy

Note that the pipe operation was used to create a scatter plot using the newly created col-
umn.

summarise()

my.data |>
summarise(total = n(),

avg = mean(people)
)

total avg
1 33 71.72727

We obtain the selected summary measures namely the total and the mean number of people.
Try-

33

my.data |>
filter(wind == 1) |>
summarise(total = n(),

avg = mean(people)
)

total avg
1 5 155.6

group_by()

We obtain the wind group-wise summaries below:

my.data |>
group_by(wind) |>
summarise(total=n(),

avg=mean(people))

A tibble: 3 x 3
wind total avg
<int> <int> <dbl>

1 1 5 156.
2 2 26 59.7
3 3 2 19

There are many more commands such as the transmute function which conserves the only the
needed columns. Try

my.data |>
group_by(wind, w.e) |>
transmute(total=n(),

avg=mean(people))

A tibble: 33 x 4
Groups: wind, w.e [6]

wind w.e total avg
<int> <int> <int> <dbl>

1 2 1 18 72.1
2 2 1 18 72.1
3 2 1 18 72.1

34

4 2 1 18 72.1
5 2 1 18 72.1
6 1 1 4 189
7 2 2 8 31.8
8 2 1 18 72.1
9 3 2 1 4
10 2 1 18 72.1
i 23 more rows

A simple frequency table is found using count(). Try-

my.data |>
group_by(wind, w.e) |>
count(temp)

A tibble: 10 x 4
Groups: wind, w.e [6]

wind w.e temp n
<int> <int> <int> <int>

1 1 1 1 1
2 1 1 3 3
3 1 2 3 1
4 2 1 1 4
5 2 1 2 12
6 2 1 3 2
7 2 2 2 6
8 2 2 3 2
9 3 1 2 1
10 3 2 1 1

my.data |>
group_by(wind, w.e) |>
count(temp, river)

A tibble: 16 x 5
Groups: wind, w.e [6]

wind w.e temp river n
<int> <int> <int> <int> <int>

1 1 1 1 1 1
2 1 1 3 3 3

35

3 1 2 3 3 1
4 2 1 1 1 1
5 2 1 1 2 1
6 2 1 1 3 2
7 2 1 2 1 3
8 2 1 2 2 2
9 2 1 2 3 7
10 2 1 3 3 2
11 2 2 2 1 2
12 2 2 2 3 4
13 2 2 3 2 1
14 2 2 3 3 1
15 3 1 2 2 1
16 3 2 1 2 1

The count() is useful to check the balanced nature of the data when many subgroups are
involved.

tidyr

By the phrase tidy data, it is meant the preferred way of arranging data that is easy to
analyse. The principles of tidy data are:

• Each variable forms a column.
• Each observation forms a row.
• Each type of observational unit forms a table.

The hospital admissions dataset is untidy because it does allocate many columns for a vari-
able.

my.data <- read.table(
"https://www.massey.ac.nz/~anhsmith/data/hospital.txt",
header=TRUE, sep=",")

head(my.data)

YEAR PERI NORTH1 NORTH2 NORTH3 SOUTH1 SOUTH2 SOUTH3
1 1980 1 0 4 27 4 16 27
2 1980 2 6 11 31 8 18 21
3 1980 3 6 4 25 20 16 24
4 1980 4 1 10 31 22 17 20

36

5 1980 5 4 16 22 21 30 31
6 1980 6 3 8 28 31 20 30

The main response variable namely the number of admissions is allocated different columns
depending on the North and South locations. This format is also called wide format which
can be made into a tidy long format. Try-

library(tidyr)

my.data |>
gather(NORTH1, NORTH2, NORTH3,

SOUTH1, SOUTH2, SOUTH3)

The command spread() does the opposite to gather(). The tidyr package many other
functions such as unite(), separate() etc to deal with columns. A better approach would
be to use the dplyr function pivot_longer(). Try-

my.data |>
pivot_longer(cols = NORTH1:SOUTH3,

names_to = "location",
values_to = "Admissions")

The command pivot_wider() does the opposite to pivot_longer()

The dplyr package also has functions to deal with two-tables which can be joined either
conditionally or unconditionally using commands such as full_join(). For a detailed notes
and examples, you may visit https://dplyr.tidyverse.org/articles/two-table.html but we will
be using such functions very occasionally in this course.

The reshape2 and data.table packages also have functions to do the same task.

37

https://dplyr.tidyverse.org/articles/two-table.html

A typical data analysis session in R/RStudio

A data analysis session in R/RStudio involves loading the data, graphing, and modelling. You
finally save your outputs or produce a Report.

When you begin your analysis in RStudio, start it as a new project in the File menu. You can
save all your work in one go when you quit the RStudio software. You can always load your
project later on to continue the analysis.

For the sack of simplicity, let us use an R default dataset called stackloss giving the opera-
tional data of a plant for the oxidation of ammonia to nitric acid.

data("stackloss")
head(stackloss, 5)

Air.Flow Water.Temp Acid.Conc. stack.loss
1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18

The distribution of the response variable stack.loss is explored using a histogram below:

stackloss |>
ggplot() +
aes(stack.loss) +
geom_histogram(bins = 5)

38

0.0

2.5

5.0

7.5

10 20 30 40 50
stack.loss

co
un

t

Histograms are not good displays for small datasets. In order to see the size or length of
stack.loss data, we select the stack.loss variable and then summarise the size using the n()
option.

stackloss |>
select(stack.loss) |>
summarise(n())

n()
1 21

The following commands will also work.

length(stackloss$stack.loss)

[1] 21

stackloss |> pull(stack.loss) |> length()

[1] 21

39

We may also explore how well stack.loss is related Air.Flow to using a scatter plot. For
this, we type the command plot

stackloss |>
ggplot() +
aes(y=stack.loss, x=Air.Flow) +
geom_point()

10

20

30

40

50 60 70 80
Air.Flow

st
ac

k.
lo

ss

The relationship is roughly linear. So we may fit a straight line model using the lm command.

st.line.model <- lm(stack.loss~Air.Flow, data=stackloss)

We can query this model asking for its summary using the summary() function.

summary(st.line.model)

Call:
lm(formula = stack.loss ~ Air.Flow, data = stackloss)

Residuals:
Min 1Q Median 3Q Max

40

-12.2896 -1.1272 -0.0459 1.1166 8.8728

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -44.13202 6.10586 -7.228 7.31e-07 ***
Air.Flow 1.02031 0.09995 10.208 3.77e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.098 on 19 degrees of freedom
Multiple R-squared: 0.8458, Adjusted R-squared: 0.8377
F-statistic: 104.2 on 1 and 19 DF, p-value: 3.774e-09

R default model summary is bit too long. We may just glance the overall quality measures of
the fitted model as follows:

library(tidyverse)
library(broom)
library(kableExtra)

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

group_rows

out1 <- st.line.model |>
glance() |>
mutate(across(where(is.numeric),

~round(., 2))
)

out1 |> t() |> kable() |>
kable_classic(full_width = F)

For processing using Rmarkdown, we may use the codes which will give a tidy tabular output
in the word-processed output.

library(tidyverse)
library(broom)

41

r.squared 0.85
adj.r.squared 0.84
sigma 4.10
statistic 104.20
p.value 0.00
df 1.00
logLik -58.37
AIC 122.74
BIC 125.87
deviance 319.12
df.residual 19.00
nobs 21.00

term estimate std.error statistic p.value
(Intercept) -44.13 6.11 -7.23 0
Air.Flow 1.02 0.10 10.21 0

library(kableExtra)

out1 <- st.line.model |>
tidy() |>
mutate(across(where(is.numeric), ~round(., 2)))

kable(out1) |>
kable_classic(full_width = F)

The fitted model is shown below:

ggplot(stackloss) +
aes(y=stack.loss, x=Air.Flow) +
geom_point() +
geom_smooth(method = lm, se = FALSE)

`geom_smooth()` using formula = 'y ~ x'

42

10

20

30

40

50 60 70 80
Air.Flow

st
ac

k.
lo

ss

The fitted model can also be displayed on the scatter plot using the old style plot and abline
commands.

plot(stack.loss ~ Air.Flow, data=stackloss)
st.line.model <- lm(stack.loss~Air.Flow, data=stackloss)
abline(st.line.model)

Data Quality Checks

It is a good idea to check the quality of secondary data sourced from elsewhere. For example,
there could be missing values in the dataset. Consider the Telomeres data downloaded from
http://www.massey.ac.nz/~anhsmith/data/rsos192136_si_001.xlsx

#| eval: false
url <- "http://www.massey.ac.nz/~anhsmith/data/rsos192136_si_001.xlsx"
destfile <- "rsos192136_si_001.xlsx"
#
download.file(url, destfile)

43

http://www.massey.ac.nz/~anhsmith/data/rsos192136_si_001.xlsx

url <- "http://www.massey.ac.nz/~anhsmith/data/rsos192136_si_001.xlsx"
destfile <- "rsos192136_si_001.xlsx"

curl::curl_download(url, destfile)

library(readxl)
rsos192136_si_001 <- read_excel("rsos192136_si_001.xlsx")

The missingness of data can be quickly explored using many R packages. The downloaded
Telomeres dataset contain many missing values.

library(VIM)

Loading required package: colorspace

Loading required package: grid

VIM is ready to use.

Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues

Attaching package: 'VIM'

The following object is masked from 'package:datasets':

sleep

res <- rsos192136_si_001 |>
aggr(sortVar=TRUE) |>
summary() |>
pluck("combinations")

44

P
ro

po
rt

io
n

of
 m

is
si

ng
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

m
or

ph
w

bt
el

o
tr

bt
el

o
ta

zt
el

o
bi

b ID sv
l

cl
ip

C
om

bi
na

tio
ns

m
or

ph
w

bt
el

o
tr

bt
el

o
ta

zt
el

o
bi

b ID sv
l

cl
ip

or

library(naniar)
gg_miss_var(rsos192136_si_001)

The term Missing completely at random (MCAR) is often used to mean there is there is no
pattern to the missing data themselves or alternatively the missingness is not related to any
other variable or data in the dataset. In other words, the probability of missingness is the
same for all units. So no bias is caused by the missing data, and we can discard cases with
missing data when we fit models.

In practice, we often find missing data do have a relationship with other variables in the
dataset but the actual missing values are random. This situation of data conditionally missing
at random is called Missing at random (MAR) data. For a particular survey question, the
response rate may differ depending on the respondent’s gender. In this situation, the actual
missingness may be random but still related to the gender variable.

Missing not at random (MNAR) is the pattern when missingness is related to other variables
in the dataset, as well as the values of the missing data are not random. In other words, there
is a predictable pattern in the missingness. So we cannot avoid the bias when missing cases
are omitted.

There are also situations such as censoring where we just record a single value without actually
measuring the variable of interest.

45

Imputation of data can be made except for the case of MCAR type. A number of R packages
are available for data imputation; see https://cran.r-project.org/web/views/MissingData.html
or https://stefvanbuuren.name/fimd/. We may occasionally cover data imputation issue in
an assignment question.

There are also R packages to perform automatic investigation for data cleaning. Try-

library(dataMaid)

makeDataReport(rsos192136_si_001, output="html", replace=TRUE)

or
library(DataExplorer)

create_report(rsos192136_si_001)

Rule based validation is enabled in the R package validate. The R package janitor has a
function get_dupes() to find duplicate entries in the dataset. Cleaner package will allow to
clean the variables so that the columns are consistent in terms of the factor, date, numerical
variable types. You will be largely using data that are already cleaned for your assignments
but be aware that you have to perform data cleaning and perform necessary quality checks
before analysis.

46

https://cran.r-project.org/web/views/MissingData.html
https://stefvanbuuren.name/fimd/

Further Help

There are a number of online sources (tutorials, discussion groups etc) for getting help with
R. These links are available at your class Stream. You may also use the advanced search
facility of Goggle at https://www.google.com/advanced_search; more specifically at https:
//stackoverflow.com.

• For further online tutorials

– https://r4ds.had.co.nz/
– https://www.datacamp.org

• For further graphing example

– https://www.r-graph-gallery.com/all-graphs

• Getting help:

– RStudio cheat sheets: https://www.rstudio.com/resources/cheatsheets
– RStudio resources https://resources.rstudio.com
– Recommended R packages by topic: https://cran.r-project.org/web/views/
– StackOverflow: https://stackoverflow.com/questions/tagged/r

47

https://www.google.com/advanced_search
https://stackoverflow.com
https://stackoverflow.com
https://r4ds.had.co.nz/
https://www.datacamp.org
https://www.r-graph-gallery.com/all-graphs
https://www.rstudio.com/resources/cheatsheets
https://resources.rstudio.com
https://cran.r-project.org/web/views/
https://stackoverflow.com/questions/tagged/r

R default (base) Graphing

For a simple bar chart, try

freq <- c(1, 2, 3, 4, 5)
names <- c("A","B","C","D","E")
barplot(freq, names.arg=names)

Let us generate random data from the normal distribution N(10,1) distribution and form a
batch of data for illustrating graphing in R. Try the following commands one by one.

x <- rnorm(40, 10,1)

hist(x)

Histogram of x

x

F
re

qu
en

cy

8 9 10 11 12

0
2

4
6

8
10

48

boxplot(x)

8
9

10
11

plot(x)

49

0 10 20 30 40

8
9

10
11

Index

x

plot(density(x), xlab="")

7 8 9 10 11 12 13

0.
0

0.
1

0.
2

0.
3

density(x = x)

D
en

si
ty

50

stripchart(round(x,1), method = "stack", pch=20)

8 9 10 11

plot(ecdf(x), verticals=TRUE)

51

8 9 10 11 12

0.
0

0.
4

0.
8

ecdf(x)

x

F
n(

x)

We can form a matrix of order 3X2 or (or 2X3) and display all the above six graphs in a panel.
This is done using the option par(), which controls the graphics parameters.

x <- rnorm(40, 10,1)

par(mfrow = c(2, 3))

hist(x)

boxplot(x)

plot(x)

plot(density(x), xlab='')

stripchart(round(x,1), method = "stack", pch=20)

plot(ecdf(x), verticals=TRUE)

52

Histogram of x

x

F
re

qu
en

cy

8 9 10 11 12

0
1

2
3

4
5

6
7

8
9

10
11

12

0 10 20 30 40

8
9

10
11

12

Index

x

7 8 9 11 13

0.
00

0.
10

0.
20

0.
30

density(x = x)

D
en

si
ty

8 9 10 11 12 8 9 10 11 12
0.

0
0.

4
0.

8

ecdf(x)

x

F
n(

x)

Although we shall not cover them here, many plotting options can be set using par() function;
including size of margins, font types, the colour of axis labels etc. See help("par"). The
option par(new=T) will be useful for an overlaid graph (instead of splitting a graph). Try the
following:

x <- rnorm(40, 10,1)

plot(x, type = "o", pch = 1, ylab = "",
ylim = c(6.5, 13.5), lty = 1)

par(new=T)

y <- rnorm(40, 10,1)

53

plot(y, type = "o", pch = 2,
ylab = "Two Batches of Random Normal Data",
ylim = c(6.5, 13.5), lty = 2)

Note that pch specifies for the plotting character and lty specifies the line type. You can add
a legend by the following command line:

legend("topright", c("Batch I", "Batch II"), pch=1:2, lty=1:2)

For scatter and other related plots, the command is plot(). Try

x <- rnorm(40, 10,1)
y <- rnorm(40, 10,1)
plot(y~x) # or plot(x,y)

Add a title by the command

title("This is my title")

Add a reference line for the mean at the x-axis by the command

abline(v=10)

and again with abline(h=10) for the y-axis. A 45 degree (Y=X) line can be added by the
command

abline(0,1) #slope, b=1, y-intercept a=1

You may also specify two points on the graph, and ask them to be connected using the
command

lines(c(8, 12), c(8, 12), lty=2, col=4, lwd=2)

Note that the line() has extra arguments to control the line type, line width, and colour.

The command rug(x) draws will draw small vertical lines on the x-axis (the command actually
suits better for one dimensional graphs such as a boxplot). Try

rug(x)

rug(y, side=2) #side =2 specifies y-axis

Graphs can be saved in various file formats, such as PDF (.pdf), JPEG (.jpeg or .jpg), or
postscript (.ps), by enclosing the plotting function in the appropriate commands. For example,
to save a simple figure as a PDF file, we use the pdf() function.

x <- 1:10

y <- x^2

pdf(file = "Fig.pdf")

54

plot(x, y)

dev.off()

The command dev.off() closes the file. You may use the copy and paste facility for processing
graphs or use the RStudio option to save graphs.

Thelattice package contains extra graphing facilities but such graphs can be produced using
ggplot2 package. Try-

my.data <-read.csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",
header=TRUE)

library(lattice)

bwplot(TELETIME ~ factor(SCHOOL),
data = my.data)

T
E

LE
T

IM
E

500

1000

1500

2000

2500

1 2 3

It requires a bit of coding to combine base, lattice and ggplot graphs. Try the following codes
which combines three density plots of the same data produced in different styles.

55

library("grid")
library("ggplotify")

x= rnorm(30)

p1 <- as.grob(~plot(density(x)))
p1 <- as.ggplot(p1)

p2 <- as.grob(densityplot(x))
p2 <- as.ggplot(p2)

library(ggplot2)

p3 <- data.frame(x=x) |>
ggplot() +
aes(x) +
geom_density()

library(patchwork)

p1/(p2+p3)

Tip

It is optional to work through the activities that follow to gain an appreciation of how
R works. Do not try to remember how to do everything right now. For your assignment
work, we will be given the R codes to load data, graphing and modelling. These codes
will give you a head-start. Note that we often often learn R by doing and sometime
making mistakes.

56

R Objects, Model Syntax etc.

In R, we work with objects. There are different classes of objects including: character,
integer, numeric, vector, matrix, array, data.frame, list, lm (linear model). An object
may belong to several classes at once.

Suppose that your data consists of 4 numbers say 1 to 4. We can combine these numbers using
the c() function namely c(1,2,3,4) and then assign it to x, an object.

x <- c(1,2,3,4)

Alternatively, we can use the scan() function to enter the data manually one by one. In
practice we load/import data and these details are explained in the next section.

Evidently x is a vector and also belongs to other classes of objects. This can be queried as
follows:

is(x)

The main class it belongs to is queried as

class(x)

Our data are actually integers and arranged in a pattern. So we can define x as follows:

x <- 1:4

The colon (:) operator created the desired pattern. Alternative expressions include

x <- seq(1, 4, by=1)

Try is(x) and class(x) and check whether our data are recognised as integer class.

We can do many mathematical manipulations on x. Try

mean(x)
min(x)
max(x)

57

sum(x)
sd(x)
var(x)
sort(x, T)
trunc(x/2)

Vector elements are accessed by square brackets, []. Try

x[2]+x[4]
x[2:3]
x[c(1,3)]
x[-2]

Assume that our data are actually categorical codes. Then the correct way of defining the
character data is to use single quotes as

x <- c('a', 'b', 'c', 'd')

Now try Try is(x) and class(x). For large patterned categorical data, placing quotes is
laborious. So we can change the class as follows:

x <- as.character(1:4)

Assume that you have two batches of data. The first one is

x <- 1:4

and the second one is

y <- c('a', 'b', 'c', 'd')

These two batches can be combined into a matrix as follows:

m <- cbind(x,y)

Here the matrix m is formed by binding the columns (vectors). The other option is to bind as
rows

m <- rbind(x,y)

Evidently vectors must be of the same length for these commands to work. We can also form
a matrix by splitting a vector. Try

58

x <- 1:6
m <- matrix(x, byrow = TRUE, ncol = 3)
m <- matrix(x, byrow = TRUE, ncol = 2)

and just type m to see the generated matrix on the R console.

m

To access the first of row of the matrix m, we use m[1,]; to access the first column of m, we
use m[,1].

A data frame is an R object that contains vectors; the vectors are stored vertically in a matrix
like structure, and can be referred to by the name of the column. The main advantage of a
data frame is that the variables in a data frame do not all need to be the same type; e.g. some
variables can be of class numeric, and some variables can be of class character. We can create
a data frame object using the data.frame() function. This data frame contains two small
vectors, the first of which is named ID, and the second NAME. Try

x <- 1:4
y <- c('a', 'b', 'c', 'd')
my.data <-data.frame(ID=x, NAME=y)
my.data

We can access the original vector of interest in the following way:

my.data$NAME

or with tidyverse

my.data |> pull(NAME)

There are times when it is useful to convert a data frame into a matrix; we can do this with
the as.matrix() function.

m <- as.matrix(my.data)

Type class(m) and see the changes.

Two data frames can also be merged into a single data frame using the merge command.

The internal structure of an R object can be viewed using the diagnostic function str().

Simple Manipulations

59

There is always more than one-way of manipulating the data, producing summaries and tables
from raw data.

One of the simplest manipulations on a batch of data we may do is to change the data type
say numeric to character. For example, the television viewing time data in the text file tv.csv
is read into a dataframe by the command line

my.data <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",
header =TRUE
)

We can improve the read.csv command to recognise the data type while reading the table as
follows, using the read_csv command from the readr package:

my.data <- read_csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",
col_types = "nfcc"
)

The argument col_types = "nfcc" stands for {numeric, factor, character, character},
to match the order of the columns.

my.data

A tibble: 46 x 4
TELETIME SEX SCHOOL STANDARD

<dbl> <fct> <chr> <chr>
1 1482 1 1 4
2 2018 1 1 4
3 1849 1 1 4
4 857 1 1 4
5 2027 2 1 4
6 2368 2 1 4
7 1783 2 1 4
8 1769 2 1 4
9 2534 1 1 3
10 2366 1 1 3
i 36 more rows

We often do a summary of a numerical variable for a given categorical variable. For example,
we like to see obtain the summary statistics of TV viewing times for various schools. The
commands

60

attach(my.data)
by(TELETIME, SCHOOL, summary)

We employed the by() command above and instead, we may also use tapply() aggregate()
functions:

tapply(TELETIME, SCHOOL, summary)

aggregate(TELETIME, list(SCHOOL), summary)

A tabulated summary of categorical data is obtained using the table() command.

my.data <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/rangitikei.csv",
header=TRUE
)

wind <- my.data |> pull(wind)
river <- my.data |> pull(river)

table(wind, river)

It is sometimes convenient to work with matrices for some R functions such as apply(). For
example, the number of admissions data in hospital.txt data can be formed as a matrix.
Note that this is possible because we have the same number of observations for each hospital
location.

data <- read.table(
"https://www.massey.ac.nz/~anhsmith/data/hospital.txt",
header=TRUE,
sep=",")

M <- data |>
select(NORTH1, NORTH2, NORTH3,

SOUTH1, SOUTH2, SOUTH3) |>
sqrt()

means <- apply(M, 1, mean)
sds <- apply(M, 1, sd)

plot(means, sds)

R default options for Hypothesis tests and modelling

61

The stats default package in R has a number of functions for performing hypothesis tests.
However you will only use the following for this course:

ks.test - Kolmogorov-Smirnov Tests

shapiro.test - Shapiro-Wilk Normality Test

t.test - Student’s t-Test (one & two samples, paired t-test etc)

pairwise.t.test - Pairwise t tests (for multiple comparison)

oneway.test - Test for Equal Means in a One-Way Layout

TukeyHSD - To Compute Tukey’s Honest Significant Differences

var.test - F Test to Compare Two Variances

bartlett.test - Bartlett Test of Homogeneity of Variances

fisher.test - Fisher’s Exact Test for Count Data

chisq.test - Pearson’s Chi-squared Test for Count Data

cor.test - Test for Association/Correlation Between Paired Samples

The car package is needed for the following:

durbinWatsonTest Durbin-Watson Test for autocorrelated Errors

leveneTest Levene’s Test

We will largely use the R function lm in this course. The syntax for specifying a model under
lm command (and various other model related commands) is explained below:

The structure of the model is that the response variable is modelled as a function of the
response variables. The symbol ~ (tilde) is used to say “a function of”. The simple regression
of y on x is therefore specified as

lm(y ~ x)

The same applies to a one-way ANOVA in which x is a categorical factor. For example,
consider tv.txt dataset and the one-way ANOVA model of TELETIME for SCHOOL is specified
as follows:

mydata <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/tv.csv",
header=TRUE
)

mymodel <- lm(TELETIME ~ factor(SCHOOL),
data = mydata) # replace lm by aov and try

62

summary(mymodel)

The function summary() gives the summary of the model (F statistics, residual SD etc). The
model summary output can be stored into a text file using the function sink() or copy and
paste in the windows version. Graphs associated with a model can be obtained using the
command

plot(mymodel)

In the above context, we may also use the specific test command which will give the same
result but this test can also be performed without assuming equal variances.

oneway.test(TELETIME ~ SCHOOL,
var.equal = TRUE,
data = mydata)

For the lm command, note the following:

+ indicates inclusion (not addition) of an explanatory variable in the model

- indicates deletion (not subtraction) of an explanatory variable from the model

* indicates the inclusion of the explanatory variables and their interaction (not multiplication)
between explanatory variables

: (colon) means only interaction between explanatory variables

/ indicates the nesting (not division) of explanatory variables

| indicates the conditioning (for example y ~ x|z means that y is a function of x for given
z).

For our course, you will not use the last two types. Some model examples are given below:

lm(y ~ x + z) #regression of y on x and z (flat surface fit)

lm(y ~ x*z) #includes the interaction term ie lm(y ~ x + z + x:z)

lm(y ~ x + I(x^2) # fits a quadratic model or use poly(x,2)

lm(log(y) ~ sqrt(x) + log(z)) #all variables are transformed

As a further example, consider a study guide dataset. The following commands fit a simple
regression model and then plot the fitted line on a scatter plot. Note that commands can be
shortened but deliberately shown this way.

mydata <- read.csv(
"https://www.massey.ac.nz/~anhsmith/data/horsehearts.csv",

63

header=TRUE
)

x <- mydata$EXTDIA
y <- mydata$WEIGHT

simplereg <- lm(y ~ x)

Note that our model object simplereg can be queried in many ways. The command summary()
gives the following output.

summary(simplereg)
or
library(broom)
tidy(simplereg)
glance(simplereg)

The command names(simplereg) will gives the names of many individual components of the
object simplereg we created. For example, a plot of the residuals against the fitted values
can be obtained as

plot(residuals(simplereg) ~ fitted.values(simplereg))

64

Bibliography
[1] L. Wilkinson. The Grammar of Graphics. Berlin, Heidelberg: Springer-Verlag, 2005. isbn:

0387245448.

65

	Installing R and RStudio
	Some R basics
	Quarto
	R Projects and GitHub
	Loading/Importing Data
	Graphing with ggplot2
	Grammar of Graphics
	Aesthetic Mapping (aes)
	Geometric Objects (geom)
	ggplot builder

	tidyverse and related packages
	dplyr
	Piping
	tidyr

	A typical data analysis session in R/RStudio
	Data Quality Checks

	Further Help
	R default (base) Graphing
	R Objects, Model Syntax etc.

