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In this chapter, we consider multiple regression and other models in which there are more
than one predictor (or 𝑋) variable. This extends what we covered in the last chapter where
we examined one predictor to multiple predictors. Once again our focus is on finding the
estimates of coefficients or parameters in multiple linear regression models by the method of
least squares. For this we assume that

1. The predictor (or explanatory or controlled or covariate) variables 𝑋𝑖 (𝑖 = 1, 2, ..., 𝑝) are
known without error.
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2. The mean or expected value of the dependent (or response) variable 𝑌 is related to the
𝑋𝑖 (𝑖 = 1, 2, ..., 𝑝) according to a linear expression

𝐸(𝑦 ∣ 𝑥) = 𝑎 + 𝑏1𝑥𝑙 + 𝑏2𝑥2 + .... + 𝑏𝑝𝑥𝑝

i.e. a straight line (for one 𝑋 variable), a plane (for two 𝑋 variables) or a hyperplane
(for more than two 𝑋 variables). This means that the fitted model can be written as

fit = 𝑎 + 𝑏1𝑥𝑙 + 𝑏2𝑥2 + .... + 𝑏𝑝𝑥𝑝.

3. There is random (unpredictable, unexplained) variability of 𝑌 about the fitted model.
That is,

𝑦 = fit + residual.

4. In order to apply statistical inferences to a model, a number of assumptions need to be
made. To be able to form 𝑡 and 𝐹 statistics, we assume that

5. The variability in 𝑌 about the line (plane etc) is constant and independent of the 𝑋
variables.

6. The variability of 𝑌 follows a Normal distribution. That is, the distribution of 𝑌 (given
certain values of the 𝑋𝑖 variables) is Normal.

7. Given (different) outcomes of the 𝑋 variables, the corresponding 𝑌 variables are inde-
pendent of one another.

We will continue to use the data set horsehearts of the weights of horses’ hearts and other
related measurements.
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1 Full Regression

With one explanatory variable scatterplots and correlation coefficients provided good starting
points for exploring relationships between the explanatory and response variables. This is even
more relevant with two or more explanatory variables. For the horses’ hearts data, there are
six potential explanatory variables; namely EXTDIA, EXTSYS, INNERDIA, INNERSYS, OUTERDIA
and OUTERSYS. These measurements of heart width are made of the exterior width, inner wall
and outer wall at two different phases, the diastole phase and the systole phase. So a matrix
of scatter plots (or matrix plot) of these variables will be useful for exploratory analysis.

It is also a good idea to form the simple correlation coefficients between each pair of explanatory
variables and between each explanatory variable and the response variable 𝑌 , the weight of
the horse’s heart. These correlation coefficients can be displayed in a correlation matrix as
shown in Figure 1.1.

library(tidyverse)
library(tidymodels)

Warning: package 'scales' was built under R version 4.3.2

library(kableExtra)
theme_set(theme_minimal())

download.file(
url = "http://www.massey.ac.nz/~anhsmith/data/horsehearts.RData",
destfile = "horsehearts.RData")

load("horsehearts.RData")

library(GGally)

Registered S3 method overwritten by 'GGally':
method from
+.gg ggplot2
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ggpairs(horsehearts)
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Figure 1.1: Scatter plot and correlation matrix

It is also possible to obtain the 𝑝-values for all the simple correlation coefficients displayed
above and test whether these are significantly different from zero.

A number of facts about the data emerge from our EDA. All of the correlation coefficients are
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Table 1.1: Full Regression tidy() output

term estimate std.error statistic p.value
(Intercept) -1.631 0.488 -3.343 0.002
INNERSYS 0.232 0.308 0.753 0.456
INNERDIA 0.520 0.395 1.314 0.197
OUTERSYS 0.711 0.329 2.164 0.037
OUTERDIA -0.557 0.451 -1.236 0.224
EXTSYS -0.300 0.135 -2.227 0.032
EXTDIA 0.339 0.148 2.296 0.027

positive and reasonably large which indicates that with large hearts all the lengths increase
in a fairly uniform manner. The predictor variables are also highly inter-correlated. This
suggests that not all of these variables are needed but only a subset of them.

The usual tidy() function output of multiple regression weight on all of the available (six)
predictors is shown in Table 1.1.

full.reg <- lm(WEIGHT~ ., data=horsehearts)
tidy(full.reg) # or summary(full.reg)

This regression model is known as the full regression because we have included all the
predictors in our model. The R syntax ~. means that we are placing all variables in the
dataframe except the one selected as the response variable. We note that the slope coefficients
of the predictors INNERDIA, INNERSYS, and OUTERDIA are not significant at 5% level. This
confirms that we do not need to place all six predictors in the model but only a subset of
them.

The highly correlated predictor INNERDIA (see Figure 1.1) is also found to have a insignificant
coefficient in Table 1.1. This is somewhat surprising and casts doubts on the suitability of the
full regression fit. If two or more explanatory variables are very highly correlated (i.e. almost
collinear), then we deal with multicollinearity. The estimated standard errors of the re-
gression coefficients will be inflated in the presence of multicollinearity. As result, the 𝑡-value
will become small leading to a model with many insignificant coefficients. Multicollinearity
does not affect the residual standard error much. The obvious remedy for multicollinearity
is that one or more of the highly correlated variables can be dropped. Measures such as the
Variance Inflation factor (VIF) are available to study the effect of multicollinearity. A VIF
factor of more than 5 for a coefficient means that its variance is artificially inflated by the high
correlation among the predictors. For the full regression model, the VIF factors are obtained
using the car package function vif() and shown as Table 1.2.

car::vif(full.reg)
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Table 1.2: Variance Inflation Factors

x
INNERSYS 8.77
INNERDIA 8.60
OUTERSYS 7.71
OUTERDIA 6.66
EXTSYS 16.05
EXTDIA 22.00

All the VIF values are over 5, and hence the full regression model must be simplified dropping
one or more predictors.

Let us now compare the fit and summary measures of the simple regression lm(WEIGHT ~
INNERDIA, data=horsehearts) with the full regression lm(WEIGHT ~ ., data=horsehearts).
Figure 1.2 compares the actual and fitted 𝑌 values for these two models.

library(modelr)

full.reg <- lm(WEIGHT ~ ., data=horsehearts)

simple.reg <- lm(WEIGHT ~ INNERDIA, data=horsehearts)

hhpred <- horsehearts |>
gather_predictions(full.reg, simple.reg) |>
mutate(residuals=WEIGHT-pred)

hhpred |>
ggplot() +
aes(x=WEIGHT, y=pred, colour=model) +
geom_point() +
geom_abline(slope=1, intercept = 0, alpha=.5) +
theme(aspect.ratio = 1) +
ylab("Predicted WEIGHT") +
ggtitle("Comparison of model predictions")
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Figure 1.2: Comparison of Multiple Regression and Simple Regression

Both the simple and full regression models give similar predictions when the horses heart
weight is below 2.5 kg, but the simple regression residuals are bit bigger for larger hearts.

We are rather hesitant to make unique claims about any particular subset of predictors based
on the correlation matrix or based on the significance of the coefficients from the multiple
regression output. In forthcoming sections, methods to decide on a subset of these variables
will be explained, but first we look at the issues involved when predictor variables are correlated
to each other.
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2 Measuring Variation Explained by Predictors

The variation in a variable can be measured by its sum of squares. In this section, we illustrate
this variation by the area of a circle. For brevity, we denote the Total Sum of Squares, the
Regression Sum of Squares and the Error or residual Sum of Squares by SST, SSR and SSE
respectively. In Figure 2.1, the circle is labelled 𝑦 and represents the Sum of Squares for all
the 𝑦 observations, that is, SST.

Figure 2.1: Effect of predictor correlation with the response

For the full regression of horse heart weight, we obtain the ANOVA output using the com-
mand

anova(full.reg)

Let’s take a look at the sums of squares table.
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Table 2.1: Sums of squares for the full regression of horsehearts data

term df sumsq
INNERSYS 1 34.40
INNERDIA 1 3.53
OUTERSYS 1 2.76
OUTERDIA 1 0.13
EXTSYS 1 0.06
EXTDIA 1 1.90
Residuals 39 14.07
Total 45 56.85

SS <- anova(full.reg) |>
tidy() |>
select(term:sumsq) |>
janitor::adorn_totals()

Now let’s calculate the Sums of Squares Total (SST), Error (SSE), and Regression (SSR).

tibble(
SST = SS |> filter(term=="Total") |> pull(sumsq),
SSE = SS |> filter(term=="Residuals") |> pull(sumsq),
SSR = SST - SSE

)

# A tibble: 1 x 3
SST SSE SSR

<dbl> <dbl> <dbl>
1 56.8 14.1 42.8

In Figure 2.1(a), SST = SSR + SSE = 32.731 + 24.115 = 56.845. Consider now the straight
line relationship between 𝑦 and one response variable 𝑥. This situation is illustrated in Fig-
ure 2.1(b). The shaded overlap of the two circles illustrates the variation in 𝑦 about the mean
explained by the variable 𝑥, and this shaded area represents the regression sum of squares SSR.
The remaining area of the circle for 𝑦 represents the unexplained variation in 𝑦 or the residual
sum of squares SSE. Note that the circle or Venn diagrams represent SS only qualitatively
(not to scale). The variation in 𝑦 is thus separated into two parts, namely SST = SSR +
SSE.

Notice that we are not very interested in the unshaded area of the circle representing the
explanatory variable, 𝑥; it is the variation in the response variable, 𝑦, which is important.
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Also notice that the overlapping circles indicate that the two variables are correlated, that is
the correlation coefficient, 𝑟𝑥𝑦, is not zero. The shaded area is related to

𝑅2 = proportion of the variation of 𝑦 explained by 𝑥 = SSR/SST = 32.731/56.845 = 0.576 =
𝑟2

𝑥𝑦.

Note from Figure 1.1 that the correlation between WEIGHT and EXTDIA is 0.759 and 0.759
squared equals 0.576.

The situation becomes more interesting when a second explanatory variable is added to the
model as illustrated by Figure 2.2.

Figure 2.2: Effect of adding two predictors

In the following discussion, the variable EXTDIA is denoted by 𝑥1 and OUTERDIA as 𝑥2. The
total overlap of (𝑥1 and 𝑥2) and 𝑦 will depend on the relationship of 𝑦 with 𝑥1, 𝑦 with 𝑥2, and
the correlation of 𝑥1 and 𝑥2.
In Figure 2.2(a), as the circles for 𝑥1 and 𝑥2 do not overlap, this represents a correlation
coefficient between these two variables of zero. In this special case,

𝑅2 = SSR(𝑥1) + SSR(𝑥2)
SST = 𝑟2

𝑥1𝑦 + 𝑟2
𝑥2𝑦.

Here, SSR(𝑥1) represents the Regression SS when 𝑦 is regressed on 𝑥1 only. SSR(𝑥2) represents
the Regression SS when 𝑦 is regressed on 𝑥2 only. The unshaded area of 𝑦 represents SSE,
the residual sum of squares, which is the sum of squares of 𝑦 unexplained by 𝑥1 or 𝑥2. The
special case of uncorrelated explanatory variables is in many ways ideal but it usually
only occurs when 𝑥1 and 𝑥2 are constructed to have zero correlation (which means that the
situation, known as orthogonality, is usually confined to experimental designs). There is an
added bonus when 𝑥1 and 𝑥2 have zero correlation. In this situation the fitted model is

̂𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2

where 𝑏1 and 𝑏2 take the same values as in the separate straight line models ̂𝑦 = 𝑎 + 𝑏1𝑥1 and
̂𝑦 = 𝑎 + 𝑏2𝑥2.
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However in observational studies the correlations between predictor variables will usually be
nonzero. The circle diagram shown in Figure 2.2(b) illustrates the case when 𝑥1 and 𝑥2 are
correlated. In this case

𝑅2 < SSR(𝑥1) + SSR(𝑥2)
SST

and the slope coefficients for both 𝑥1 and 𝑥2 change when both these variables are included in
the regression model.

Figure 2.2(c) gives the extreme case when 𝑥1 and 𝑥2 have nearly perfect correlation. If the
correlation between 𝑥1 and 𝑥2 is perfect, then the two variables will be said to be collinear. If
two or more explanatory variables are very highly correlated (i.e. almost collinear), then we
deal with multicollinearity.

From Figure 2.1 and Figure 2.2, it is clear that for correlated variables, the variation (SS)
explained by a particular predictor cannot be independently extracted (due to the commonly
shared variation). Hence, we consider how much a predictor explains additionally given
that there are already certain predictors are in the model. The additional overlap due to 𝑥2
with 𝑦 after 𝑥1, known as the additional SSR or Sequential SS is an important idea in
model building. The additional SSR is known as Type I sums of squares in the statistical
literature.

Note that we can also define the additional variation in 𝑦 explained by 𝑥1 after 𝑥2. It is impor-
tant to note that in general the additional SSR depends on the order of placing the predictors.
This order does not have any effect on the coefficient estimation, standard errors
etc.

2.1 Significance testing of Type I SS

The significance of the additional variation explained by a predictor can be tested using a 𝑡 or
𝐹 statistic. Consider the simple regression model of WEIGHT on EXTDIA. Suppose we decided to
add the explanatory variable OUTERDIA to the model, i.e. regress WEIGHT on two explanatory
variables EXTDIA and OUTERDIA. Is this new model a significant improvement on the existing
one? For testing the null hypothesis that the true slope coefficient of OUTERDIA in this model
is zero, the 𝑡-statistic is 1.531 (see output below).

twovar.model <- lm(WEIGHT~ EXTDIA+OUTERDIA, data=horsehearts)

twovar.model |> tidy()

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
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1 (Intercept) -1.97 0.551 -3.57 0.000885
2 EXTDIA 0.226 0.0614 3.68 0.000637
3 OUTERDIA 0.522 0.341 1.53 0.133

The 𝑡 and 𝐹 distributions are related by the equation 𝑡2 = 𝐹 when the numerator df is just
one for the 𝐹 statistic. Hence 1.532 = 2.34 is the 𝐹 value for testing the significance of the
additional SSR due to OUTERDIA. In other words, the addition of OUTERDIA to the simple
regression model does not result in a significant improvement in the sense that the reduction
in residual SS (= 1.247) as measured by the 𝐹 value of 2.34 is not significant (𝑝-value being
0.133).

onevar.model <- lm(WEIGHT~ EXTDIA, data=horsehearts)

twovar.model <- lm(WEIGHT~ EXTDIA+OUTERDIA, data=horsehearts)

anova(onevar.model, twovar.model)

Analysis of Variance Table

Model 1: WEIGHT ~ EXTDIA
Model 2: WEIGHT ~ EXTDIA + OUTERDIA
Res.Df RSS Df Sum of Sq F Pr(>F)

1 44 24.115
2 43 22.867 1 1.2472 2.3453 0.133

Although OUTERDIA is correlated with WEIGHT, it also has high correlation with EXTDIA. In
other words, the correlation matrix gives us some indication of how many variables might be
needed in a multiple regression model, although by itself it cannot tell us what combination
of predictor variables is good or best.

Figure 2.3 and Figure 2.4 summarise the following facts:

1. When there is only one explanatory variable, 𝑅2 = SSR/SST equals the square of the
correlation coefficient between that variable and the dependent variable. Therefore if
only one variable is to be chosen, it should have the highest correlation with the response
variable, 𝑌 .

2. When variables are added to a model, the regression sum of squares SSR will increase
and the residual or error sum of squares SSE will reduce. The opposite is true if variables
are dropped from the model. This fact follows from Figure 2.4.

3. The other side of the coin to the above remark is that as additional variables are added,
the Sums of Squares for residuals, SSE, will decrease towards zero as also shown in
Figure 2.4(c).
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Figure 2.3: Issues with multiple predictors

Figure 2.4: Effect of multiple predictors on model summaries
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4. The overlap of circles in suggests that these changes in both SSR and SST will lessen as
more variables are added, see Figure 2.3(b).

5. Following on from the last two notes, as 𝑅2 = SSR/SST, 𝑅2 will increase monotonically
towards 1 as additional variables are added to the model. (monotonically increasing
means that it never decreases although it could remain the same). This is indicated by
Figure 2.4(a). If variables are dropped, then 𝑅2 will monotonically decrease.

6. Against the above trends, the graph of residual mean square in Figure 2.4(b) reduces to a
minimum but may eventually start to increase if enough variables are added. The resid-
ual sum of squares SSE decreases as variables are added to the model (see Figure 2.3(b)).
However, the associated df values also decrease so that the residual standard deviation
decreases at first and then starts to increase as shown in Figure 2.4(b). (Note that the
residual standard error 𝑠𝑒 is the square root of the residual mean square

𝑠2
𝑒 = SSE

error degrees of freedom ,

denoted as MSE in Figure 2.3(b)). After a number of variables have been entered, the
additional amount of variation explained by them slows down but the degrees of freedom
continues to change by 1 for every variable added, resulting in the eventual increase in
residual mean square. Note that the graphs in Figure 2.3 are idealised ones. For some
data sets, the behaviour of residual mean square may not be monotone.

7. Notice that the above trends will occur even if the variables added are garbage. For
example, you could generate a column of random data or a column of birthdays of your
friends, and this would improve the 𝑅2 but not the adjusted 𝑅2. The adjusted 𝑅2

makes adjustment for the degrees of freedom for the SSR and SSE, and hence reliable
when compared to the unadjusted or multiple 𝑅2. The residual mean square error also
partly adjusts for the drop in the degrees of freedom for the SSE and hence becomes an
important measure. The addition of unimportant variables will not improve the adjusted
𝑅2 and the mean square error 𝑠2

𝑒.

2.2 Other SS types

The R anova function anova() calculates sequential or Type-I SS values.

Type-II sums of squares is based on the principle of marginality. Type II SS correspond to
the R convention in which each variable effect is adjusted for all other appropriate effects.

Type-III sums of squares is the SS added to the regression SS after ALL other predictors
including an intercept term. This SS however creates theoretical issues such as violation of
marginality principle and we should avoid using this SS type for hypothesis tests.
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term Type I SS Type II SS
INNERSYS 34.40 0.20
INNERDIA 3.53 0.62
OUTERSYS 2.76 1.69
OUTERDIA 0.13 0.55
EXTSYS 0.06 1.79
EXTDIA 1.90 1.90
Residuals 14.07 14.07

The R package car has the function Anova() to compute the Type II and III sums of squares.
Try-

full.model <- lm(WEIGHT~ ., data=horsehearts)

anova(full.model)

library(car)

Anova(full.model, type=2)
Anova(full.model, type=3)

For the horsehearts data, a comparison of the Type I and II sums squares is given below:

full.model <- lm(WEIGHT~ ., data=horsehearts)

anova1 <- full.model |>
anova() |>
tidy() |>
select(term, "Type I SS" = sumsq)

anova2 <- full.model |>
Anova(type=2) |>
tidy() |>
select(term, "Type II SS" = sumsq)

type1and2 <- full_join(anova1, anova2, by="term")

type1and2

When predictor variables are correlated, it is difficult to assess their absolute importance and
the importance of a variable can be assessed only relatively. This is not an issue with the most
highly correlated predictor in general.
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3 Regression Fitting with Fewer Predictors

The first step before selection of the best subset of predictors is to study the correlation
matrix. For horses’ heart data, the explanatory variable which is most highly correlated with
𝑦 (WEIGHT) is 𝑥2 (INNERDIA) having a correlation coefficient of 0.811 (see Figure 1.1). This
means that INNERDIA should be the single best predictor. We may guess that the next best
variable to join INNERDIA. This would be 𝑥3 (OUTERSYS) but the correlations between 𝑥3 and
the other explanatory variables clouds the issue. In other words, the significance or otherwise
of a variable in a multiple regression model depends on the other variables in the model.

Consider the regression of horses’ heart WEIGHT on INNERDIA, OUTERSYS, and EXTSYS.

threevar.model <- lm(WEIGHT ~ INNERDIA + OUTERSYS + EXTSYS,
data=horsehearts)

threevar.model |> tidy()

The coefficient of EXTSYS is not significant at 5% level. However coefficient of EXTSYS was
found to be significant in the full regression. The significance of INNERDIA coefficient has also
changed. This example shows that we cannot fully rely on the 𝑡-test and discard a variable
because its coefficient is insignificant.

There are various search methods for finding the best subset of explanatory variables. We
will consider stepwise procedures, namely algorithms that follow a series of steps to find a
good set of predictors. At each step, the current regression model is compared with competing
models in which one variable has either been added (forward selection procedures) or removed
(backward elimination procedures). Some measure of goodness is required so that the variable
selection procedure can decide whether to switch to one of the competing models or to stop
at the current best model. Of the two procedures, backward elimination has two advantages.
One is computational: step 2 of the forward selection requires calculation of a large number of
competing models whereas step 2 of the backward elimination only requires one. The other is

term estimate std.error statistic p.value
(Intercept) -1.341 0.474 -2.828 0.007
INNERDIA 0.958 0.262 3.649 0.001
OUTERSYS 0.597 0.203 2.940 0.005
EXTSYS -0.034 0.063 -0.534 0.596
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statistical and more subtle. Consider two predictor variables 𝑥𝑖 and 𝑥𝑗 and suppose that the
forward selection procedure does not add either because their individual importance is low.
It may be that their joint influence is important, but the forwards procedure has not been
able to detect this. In contrast, the backward elimination procedure starts with all variables
included and so is able to delete one and keep the other.

A stepwise regression algorithm can also combine both the backward elimination and forward
selection procedures. The procedure is the same as forward selection, but immediately after
each step of the forward selection algorithm, a step of backward elimination is carried out.

Variable selection solely based 𝑝 values is preferred only for certain applications such as analysis
of factorial type experimental data where response surfaces are fitted. The base R does model
selection based on 𝐴𝐼𝐶 which has to be as minimum as possible for a good model. We shall
now discuss the concept of 𝐴𝐼𝐶 and other model selection criteria.

One way to balance model fit with model complexity (number of parameters) is to choose the
model with the minimal value of Akaike Information Criterion (AIC for short, derived by
Prof. Hirotugu Akaike as the minimum information theoretic criterion):

𝐴𝐼𝐶 = 𝑛 log (𝑆𝑆𝐸
𝑛 ) + 2𝑝

Here 𝑛 is the size of the data set and 𝑝 is the number of variables in the model. A model with
more variables (larger value of 𝑝) will produce a smaller residual sum of squares SSE but is
penalised by the second term.

Bayesian Information Criterion (BIC) (or also called Schwarz’s Bayesian criterion, SBC) places
a higher penalty that depends on 𝑛, the number of observations. As a result 𝐵𝐼𝐶 fares well
for selecting a model that explains the relationships well while 𝐴𝐼𝐶 fares well when selecting
a model for prediction purposes.

A number of corrections to 𝐴𝐼𝐶 and 𝐵𝐼𝐶 have been proposed in the literature depending on
the type of model fitted. We will not study them in this course.

An alternative measure called Mallow’s 𝐶𝑝 index is also available using which we may judge
whether the variables at the current step (smaller model) are excessive or short. If unimportant
variables are added to the model, then the variance of the fitted values will increase. Similarly
if important variables are added, then the bias of the fitted values will decrease. The 𝐶𝑝 index,
which balances the variance and bias, is given by the formula

𝐶𝑝 = SS Error for Smaller Model
Mean Square Error for full regression − (𝑛 − 2𝑝)

where 𝑝 = no. of estimated coefficients (including the intercept) in the smaller model and
𝑛 = total number of observations. The most desired value for the 𝐶𝑝 index is the number
of parameters (including the 𝑦-intercept) or just smaller. If 𝐶𝑝 >> 𝑝, the model is biased.
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On the other hand, if 𝐶𝑝 << 𝑝, the model associated variability is too large. The trade-off
between bias and variance is best when 𝐶𝑝 = 𝑝. But the 𝐶𝑝 index is not useful in judging the
adequacy of the full regression model because it requires an assumption on what constitutes
the full regression. This is not an issue with the 𝐴𝐼𝐶 or 𝐵𝐼𝐶 criterion.

For prediction modelling, the following three measures are popular and the modelr package
will extract these prediction accuracy measures and many more.

Mean Squared Deviation (MSD):

MSD is the mean of the squared errors (i.e., deviations).

𝑀𝑆𝐷 = ∑ (observation-fit)2

number of observations ,

MSD is also sometimes called the Mean Squared Error (MSE). Note that while computing
the MSE, the divisor will be the degrees of freedom and not the number of observations.
The square-root of MSE is abbreviated as RMSE, and commonly employed as a measure of
prediction accuracy.

Mean Absolute Percentage Error (MAPE):

MAPE is the average percentage relative error per observation. MAPE is defined as

𝑀𝐴𝑃𝐸 = ∑ |observation-fit|
observation

number of observations×100.

Note that MAPE is unitless.

Mean Absolute Deviation (MAD):

MAD is the average absolute error per observation and also known as MAE (mean absolute
error). MAD is defined as

𝑀𝐴𝐷 = ∑ |observation-fit|
number of observations .

For the horsehearts data, stepwise selection can be implemented using many R packages in-
cluding MASS, car, leaps HH caret, and SignifReg. Examples given below are based on the
horses hearts data.

1. The step() function performs a combination of both forward and backward regression.
This method favours a model with four variables: WEIGHT ~ INNERDIA + OUTERSYS +
EXTSYS + EXTDIA
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full.model <- lm(WEIGHT ~ ., data = horsehearts)

stats::step(full.model)
# or MASS::stepAIC(full.model)
# or step(full.model, trace = FALSE)

2. The stepAIC() function from the MASS package can also be used instead of the step()
function. Try-

library(MASS, exclude="select")

stepAIC(full.reg, direction="backward", trace = FALSE)
stepAIC(full.reg, direction="both", trace = FALSE)

null.model <- lm(WEIGHT~ 1, data=horsehearts)

stats::step(
full.reg,
scope = list(

lower = null.model,
upper = ~INNERSYS+INNERDIA+OUTERSYS+OUTERDIA+EXTSYS+EXTDIA
),

direction = "forward")

3. The SignifReg package allows variable selection under various criteria. Try-

library(SignifReg)

SignifReg(full.reg,
direction = "backward",
criterion = "BIC",
adjust.method = "none")

SignifReg(full.reg,
direction = "backward",
criterion = "r-adj",
adjust.method = "none")

SignifReg(full.reg,
direction = "backward",
criterion = "p-value",
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term estimate std.error statistic p.value
(Intercept) -1.512 0.468 -3.230 0.002
INNERDIA 0.799 0.267 2.987 0.005
OUTERSYS 0.493 0.204 2.415 0.020
EXTSYS -0.236 0.122 -1.938 0.059
EXTDIA 0.250 0.130 1.920 0.062

adjust.method = "none")

SignifReg(full.reg,
direction = "both",
criterion = "BIC",
adjust.method = "none")

SignifReg(full.reg,
direction = "both",
criterion = "r-adj",
adjust.method = "none")

SignifReg(full.reg,
direction = "both",
criterion = "p-value",
adjust.method = "none")

The forward selection procedure also picks only just two variables as seen from the following
output:

full.model <- lm(WEIGHT ~ ., data=horsehearts)

stmdl <- SignifReg(full.reg,
direction = "both",
criterion = "AIC",
adjust.method = "none")

stmdl |> tidy()

For the full regression model, the 𝐴𝐼𝐶 is -40.5 and it drops to -42.35 for the four variable
model. That is, according to the AIC criterion, a further reduction in model size does not
compensate for the decline in model fit as measured by the AIC. The 𝐶𝑝 index also recommends
the four variable model because for the 𝐶𝑝 value of 4.9 is closer to 5, the number of model
coefficients.
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4. Step-wise selection of predictors can also be done along with cross validation in each
step. The R package caret enables this. For the horses heart data, the following codes
perform the backward regression.

library(caret)
library(leaps)

set.seed(123)

fitControl <- trainControl(
method = "repeatedcv",
number = 5,
repeats = 100
)

leapBackwardfit <- train(
WEIGHT ~ .,
data = horsehearts,
trControl = fitControl,
method = "leapBackward"
)

summary(leapBackwardfit)

Note that an asterisk in the row means that a particular variable is included in the step. The
model in the last step excludes INNERSYS and OUTERDIA. On the other hand, the forward
regression includes only two variables namely INNERDIA and OUTERSYS. We can also directly
use the leaps package without cross validation.

fitControl <- trainControl(
method = "repeatedcv",
number = 5,
repeats = 100
)

leapForwardfit <- train(
WEIGHT ~ .,
data = horsehearts,
trControl = fitControl,
method = "leapForward"
)
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summary(leapForwardfit)

Subset selection object
6 Variables (and intercept)

Forced in Forced out
INNERSYS FALSE FALSE
INNERDIA FALSE FALSE
OUTERSYS FALSE FALSE
OUTERDIA FALSE FALSE
EXTSYS FALSE FALSE
EXTDIA FALSE FALSE
1 subsets of each size up to 2
Selection Algorithm: forward

INNERSYS INNERDIA OUTERSYS OUTERDIA EXTSYS EXTDIA
1 ( 1 ) " " "*" " " " " " " " "
2 ( 1 ) " " "*" "*" " " " " " "

3.1 Best Subsets Selection

An exhaustive screening of all possible regression models (and hence the name best subsets
regression) can also be done using software. For example, there are 6 predictor variables in
the horses’ hearts data. If we fix the number of predictors as 3, then ( 6

3 ) = 20 regression
models are possible. One may select the ‘best’ 3-variable model based on criteria such as AIC,
𝐶𝑝, 𝑅2

𝑎𝑑𝑗 etc. Software must be employed to perform the conventional stepwise regression
procedures. Software algorithms give one or more best candidate models fixing the number of
variables in each step.

On the basis of our analysis on the horses’ hear data, we might decide to recommend the model
with predictor variables EXTDIA, EXTSYS, INNERDIA and OUTERSYS. In particular if the model
is to be used for describing relationships then we would tend to include more variables. For
prediction purposes, however, a simpler feasible model is preferred and in this case we may
opt for the smaller model with only INNERDIA and OUTERSYS. See Table 3.1 produced using
the following R codes:

library(leaps)
library(HH)
library(kableExtra)

b.model <- regsubsets(WEIGHT ~ ., data = horsehearts) |>
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Table 3.1: Subset selection

model p rsq rss adjr2 cp bic stderr
INNERD 2 0.658 19.450 0.650 11.923 -41.677 0.665
INNERD-OUTERS 3 0.715 16.173 0.702 4.838 -46.335 0.613
INNERD-OUTERS-OUTERD 4 0.718 16.043 0.698 6.477 -42.878 0.618
INNERD-OUTERS-EXTS-EXTD 5 0.741 14.739 0.715 4.862 -42.949 0.600
INNERD-OUTERS-OUTERD-EXTS-EXTD 6 0.749 14.272 0.718 5.566 -40.602 0.597
INNERS-INNERD-OUTERS-OUTERD-EXTS-EXTD 7 0.753 14.067 0.714 7.000 -37.437 0.601

summaryHH()

b.model |>
kable(digits = 3) |>
kable_styling(bootstrap_options = "basic", full_width = F)

Sometimes theory may indicate that a certain explanatory variable should be included in
the model (e.g. due to small sample size). If this variable is found to make an insignificant
contribution to the model, then one should exclude the variable when the model is to be used
for prediction but if the model is to be used for explanation purposes only then the variable
should be included. Other considerations such as cost and time may also be taken into account.
For every method or algorithm, one could find peculiar data sets where it fouls up. The moral
– be alert and don’t automatically accept models thrown up by a program. Note there is never
one right answer as different methods and different criteria lead to different models.

Variable selection procedures can be a valuable tool in data analysis, particularly in the early
stages of building a model. At the same time, they present certain dangers. There are several
reasons for this:

1. These procedures automatically snoop though many models and may select ones which,
by chance, happen to fit well.

2. These forward or backward stepwise procedures are heuristic (i.e., shortcut) algorithms,
which often work very well but which may not always select the best model for a given
number of predictors (here best may refer to adjusted 𝑅2-values, or AIC or some other
criterion).

3. Automatic procedures cannot take into account special knowledge the analyst may have
about the data. Therefore, the model selected may not be the best (or make sense) from
a practical point of view.

4. Methods are available that shrink coefficients towards zero. The least squares approach
minimises the residual sums of squares or RSS without placing any constraint on the
coefficients. The shrinkage methods, which place a constraint on the coefficients, work
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well when there are large numbers of predictors. A ridge regression shrinks the coefficients
towards zero but in relation each other. On the other hand, (Least Absolute Selection and
Shrinkage Operator) lasso regression shrinks some of coefficients to zero which means
these predictors can be dropped. Note that the ridge regression does not completely
remove predictors. By shrinking large coefficients, we obtain a model with higher bias
but lower variance. This process is known as regularisation in the literature (not covered
in this course).
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4 Polynomial Models

Consider the pinetree data set which contains the circumference measurements of pine trees
at four positions. The simple regression of the top circumference on the first (bottom) circum-
ference, the fit is Top = -6.33 + 0.763 First. This fit is satisfactory on many counts (highly
significant 𝑡 and 𝐹 values, high 𝑅2 etc); see Table 4.1 and Table 4.2.

download.file(
url = "http://www.massey.ac.nz/~anhsmith/data/pinetree.RData",
destfile = "pinetree.RData")

load("pinetree.RData")

pine1 <- lm(Top ~ First, data = pinetree)

pine1 |> tidy()

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -6.33 0.765 -8.28 2.10e-11
2 First 0.763 0.0240 31.8 2.20e-38

pine1 |>
glance() |>
select(adj.r.squared, sigma, statistic, p.value, AIC, BIC)

The residual plot, shown as Figure 4.1, still provides an important clue that we should try a
polynomial (cubic) model.

Table 4.1: tidy() output of lm(Top~First, data=pinetree)

term estimate std.error statistic p.value
(Intercept) -6.334 0.765 -8.278 0
First 0.763 0.024 31.779 0
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Table 4.2: glance() output of lm(Top~First, data=pinetree)

adj.r.squared sigma statistic p.value AIC BIC
0.945 1.291 1009.896 0 204.85 211.133

library(ggfortify)

Registered S3 method overwritten by 'ggfortify':
method from
autoplot.glmnet parsnip

autoplot(pine1, which=1, ncol=1)
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Figure 4.1: Residuals vs fits plot

pine3 <- lm(Top ~ poly(First, 3, raw=TRUE),
data = pinetree)

Table 4.3 shows the significance results for the polynomial model T𝑜𝑝 = 44.1 − 3.97𝐹𝑖𝑟𝑠𝑡 + 0.142 (F𝑖𝑟𝑠𝑡)2−
0.00135 (First)3. This model has achieved a good reduction in the residual standard error
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Table 4.3: tidy() output of lm(Top~poly(First, 3, raw=TRUE), data=pinetree)

term estimate std.error statistic p.value
(Intercept) 44.1213 7.0391 6.2680 0
poly(First, 3, raw = TRUE)1 -3.9716 0.6951 -5.7141 0
poly(First, 3, raw = TRUE)2 0.1416 0.0221 6.3939 0
poly(First, 3, raw = TRUE)3 -0.0014 0.0002 -5.9510 0

Table 4.4: glance() output of lm(Top~poly(First,3, raw=TRUE), data=pinetree)

adj.r.squared sigma statistic p.value AIC BIC
0.97 0.89 725.98 0 162.46 172.93

and improved AIC and BIC (see Table 4.4). The residual diagnostic plots are somewhat
satisfactory. The Scale-Location plot suggests that there may be a subgrouping variable. The
fitted model can be further improved using the Area categorical factor. This topic, known as
the analysis of covariance will be covered later on. Note that both models are satisfactory in
terms of Cook’s distance. A few leverage or ℎ𝑖𝑖 values cause concern seen in Figure 4.2 but
we will ignore them given the size of the data set.

pine3 |> tidy()

pine3 |>
glance() |>
select(adj.r.squared, sigma, statistic, p.value, AIC, BIC)

autoplot(pine3, which=5, ncol=1)
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Figure 4.2: Residual vs Leverage plot

How quadratic and quartic models fare compared to the cubic fit is also of interest. Try the R
code given below and compare the outputs:

summary(lm(WEIGHT ~ OUTERDIA, data = horsehearts))
summary(lm(WEIGHT ~ poly(OUTERDIA,2, raw=T), data = horsehearts))
summary(lm(WEIGHT ~ poly(OUTERDIA,3, raw=T), data = horsehearts))
summary(lm(WEIGHT ~ poly(OUTERDIA,4, raw=T), data = horsehearts))

The key model summary measures of the four polynomial models are shown in Table 4.5. As
expected, the 𝑅2 value increases, although not by much in this case, as polynomial terms are
added. Note that the multicollinearity among the polynomial terms renders all the coefficients
of the quadratic regression insignificant at 5% level. For the cubic regression model, all the
coefficients are significant. It is usual to keep adding the higher order terms until there is no
significant increase in the additional variation explained (measured by the 𝑡 or 𝐹 statistic).
Alternatively we may use the AIC criterion. In the above example, when the quartic term
OUTERDIA4 is added, the AIC slightly increases to 114.99 (from 114.65) suggesting that we may
stop with the cubic regression.

modstats <- list(
straight.line = lm(WEIGHT ~ OUTERDIA,
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Table 4.5: Glancing Polynomial models

model r.squared adj.r.squared sigma statistic AIC BIC
straight.line 0.47 0.46 0.83 39.13 117.01 122.50
quadratic 0.48 0.46 0.83 19.87 118.17 125.49
cubic 0.54 0.51 0.79 16.38 114.65 123.79
quartic 0.56 0.51 0.79 12.81 114.99 125.96

data = horsehearts),
quadratic = lm(WEIGHT ~ poly(OUTERDIA,2,raw=T),

data=horsehearts),
cubic = lm(WEIGHT~ poly(OUTERDIA,3, raw=T),

data=horsehearts),
quartic = lm(WEIGHT~ poly(OUTERDIA,4, raw=T),

data=horsehearts)
) |>
enframe(

name = "model",
value = "fit"
) |>

mutate(glanced = map(fit, glance)) |>
unnest(glanced) |>
select(model, r.squared, adj.r.squared, sigma,

statistic, AIC, BIC)

modstats

It is desirable to keep the coefficients the same when higher order polynomial terms are added.
This can be done using orthogonal polynomial coefficients (we will skip the theory) for which
we will avoid the argument raw within the function poly(). Try-

lm(Top ~ poly(First,1), data=pinetree)
lm(Top ~ poly(First,2), data=pinetree)
lm(Top ~ poly(First,3), data=pinetree)

Stepwise methods are not employed for developing polynomial models as it would not be
appropriate (say) to have the linear and cubic terms but drop the quadratic one. The coefficient
terms for the higher order terms become very small. It is also possible that the coefficient
estimation may be incorrect due to ill conditioning of the data matrix which is used obtain the
model coefficients. Some authors recommend appropriate rescaling of the polynomial terms
(such as subtracting the mean etc) to avoid such problems.
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The use of polynomials greater than second-order is discouraged. Higher-order polynomials
are known to be extremely volatile; they have high variance, and make bad predictions. If you
need a more flexible model, then it is generally better to use some sort of smoother than a
high-order polynomial.

In fact, a popular method of smoothing is known as “local polynomial fitting”, or spline
smoothing. Local polynomials are sometimes preferred to a single polynomial regression
model for the whole data set. An example based on the pinetree data is shown in Figure 4.3
which uses the bs() function from the splines package.

pinetree |>
ggplot() +
aes(First, Top) +
geom_point() +
geom_smooth(method = lm,

formula = y ~ splines::bs(x, 3))
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Figure 4.3: Polynomial Spline smoothing
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5 Model structure and other issues

The difficult task in statistical modelling is the assessment of the underlying model structure
or alternatively knowing the true form of the relationship. For example, the true relationship
between 𝑌 and 𝑋 variables may be nonlinear. If we incorrectly assume a multiple linear
relationship instead, a good model may not result. The interaction between the explanatory
variables is also important and this topic is covered in a different section. We may also fit a
robust linear model in order to validate the ordinary least squares fit. For the horses heart
data, OUTERSYS and EXTDIA were short-listed as the predictors of WEIGHT using the
AIC criterion. This least squares regression model can be compared to the robust versions as
shown in Figure 5.1.

hh_lm <- lm(WEIGHT ~ OUTERSYS + EXTDIA, data=horsehearts)

hh_rlm <- MASS::rlm(WEIGHT ~ OUTERSYS + EXTDIA, data=horsehearts)

hh_lmrob <- robustbase::lmrob(WEIGHT ~ OUTERSYS + EXTDIA, data=horsehearts)

horsehearts |>
gather_predictions(hh_lm, hh_rlm, hh_lmrob) %>%
ggplot(aes(x=WEIGHT, y=pred, colour=model)) +
geom_point() +
geom_abline(slope=1, intercept = 0) +
ylab("Predicted WEIGHT") + theme_minimal() +
ggtitle("Comparison of model predictions")
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Figure 5.1: Comparison of predictions

Figure 5.1 shows that the scatter plot of predicted versus actual 𝑌 values for the three fitted
models which confirms that these models perform very similarly. We may also extract measures
such as mean absolute percentage error (MAPE) or residual SD or root mean square error
(RMSE) for the three models using modelr package; see the code shown below:

list(hh_lm = hh_lm,
hh_rlm = hh_rlm,
hh_lmrob = hh_lmrob) |>

enframe("method", "fit") |>
mutate(

MAPE = map_dbl(fit, \(x){mape(x, horsehearts)}),
RMSE = map_dbl(fit, \(x){rmse(x, horsehearts)})
)

# A tibble: 3 x 4
method fit MAPE RMSE
<chr> <list> <dbl> <dbl>

1 hh_lm <lm> 0.255 0.648
2 hh_rlm <rlm> 0.247 0.651
3 hh_lmrob <lmrob> 0.243 0.655
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Measures such as AIC or BIC need corrections when the normality assumption does not hold
but the above summary measures do not require such a distributional assumption to hold.

If a large dataset is in hand, a part of the data (training data) can be used to fit the model
and then we can see how well the fitted model works for the remaining data.
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6 Summary

Regression methods are the most commonly used of statistics techniques. The main aim is
to fit a model by least squares to explain the variation in the response variable 𝑌 by using
one or more explanatory variables 𝑋1, 𝑋2, … , 𝑋𝑘. The correlation coefficient 𝑟𝑥𝑦 measures
the strength of the linear relationship between 𝑌 and 𝑋; 𝑅2 measures the strength of the
linear relationship between 𝑌 and 𝑋1, 𝑋2, … , 𝑋𝑘. When 𝑘=1, then 𝑟2

𝑥𝑦 = 𝑅2. Scatter
plots and correlation coefficients provide important clues to the inter-relationships between
the variables.

In building up a model by adding new variables, the correlation (or overlap) with 𝑦 is important
but the correlations between a new explanatory variable and each of the existing explanatory
variables also determine how effective the addition of the variable will be.

Stepwise regression procedures identify potentially good regression models by repeatedly com-
paring an existing model with other models in which an explanatory variable has been either
deleted or added, using some criterion such as significance of the deleted or added term (as
measured by the 𝑝-value of the relevant 𝑡 or 𝐹 statistic) or the AIC of the model. Polynomial
regression models employ the square, cube etc terms of the original variables as additional
predictors.

When at least two explanatory variables are highly correlated, we have multicollinear data. The
effect is that the variance of least square estimators will be inflated rendering the coefficients
insignificant and hence we may need to discard one or more of the highly correlated variables.

EDA plots of residuals help to answer the question as to whether the fit is good or whether
a transformation may help or whether other variables (including square, cubic etc) should be
added. If residuals are plotted against fitted 𝑌 or 𝑋 variables no discernible pattern should
be observed. Estimated regression coefficients may be affected by leverage points, and hence
influence diagnostics are performed.
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7 What you should know

By the end of this chapter you should be able to:

• Fit and display a multiple regression (2 or more predictor variables).
• Check the assumptions of a multiple regression using residual diagnostic plots, tests for

assumptions, and examine multicollinearity.
• Measure variability explained by the model and predictors.
• Use a fitted regression to predict new data.
• Explain the significance of your model and interpret findings in context of the data and

hypotheses.
• Describe model comparison/selection and polynomial terms.
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8 Additional Material

Below is information on extensions of multiple regression modeling. This material will not be
explicitly covered or tested in this course. Please use the below material as an idea of what is
possible in your future endeavors.
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9 Smoothing and Regression modeling for
Time series

For time series data, the term smoothing means the technique of removing random variation
in the data but retaining any trend and cyclic/seasonal type of variations. Two types of
smoothing methods are considered in this section. These two methods are basically averaging
techniques, which use only the immediate past data (rather than all the observations) with
constant and variable weights for each observation.

9.1 Time Series Regression with seasonality components

Indicator variables are used to capture the seasonality such as months and quarters. Time
related trends can be picked up with the usual regression. The function tslm() from the
forecast package is handy to model the response 𝑌 using the time variable and the seasonal
indicators. Consider the credit card balance series discussed in Chapter 2. The fitted linear
model is shown in Table 9.1 and the forecasts made the model for 48 months ahead are shown
in Figure 9.1.

library(readxl)

url <- "http://www.massey.ac.nz/~anhsmith/data/hc12_daily_average_balances.xlsx"
destfile <- "hc12.xlsx"

curl::curl_download(url, destfile)

credit.balance <-
read_excel(destfile, na = "-", skip = 4) |>
pull(CRCD.MOA20) |>
na.omit() |>
ts(start=c(2000,7), frequency=12)

library(forecast)

cbfit <- tslm(credit.balance ~ trend + season)
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cbfit |> forecast(h=48) |> autoplot()
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Figure 9.1: tidy() output of the tslm() fit

cbfit |> tidy()

Warning: The `tidy()` method for objects of class `tslm` is not maintained by the broom team, and is only supported through the `lm` tidier method. Please be cautious in interpreting and reporting broom output.

This warning is displayed once per session.

Table 9.1 shows that the seasonal effects are highly significant. Figure 9.1 shows that the fitted
model is not faring well for the year 2020, which was affected by COVID. The forecasts ahead
are also untrustworthy.

Note that the time variable 𝑡 becomes the predictor in the fitted model but the model is not
based on the past or lagged 𝑌 data. The smoothing methods discussed below employ such
past data.
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Table 9.1: tidy() output of the tslm() fit

term estimate std.error statistic p.value
(Intercept) 3460.949 122.430 28.269 0.000
trend 12.771 0.395 32.358 0.000
season2 -60.206 154.786 -0.389 0.698
season3 -96.978 154.787 -0.627 0.532
season4 -137.532 154.790 -0.889 0.375
season5 -164.651 154.793 -1.064 0.288
season6 -175.292 154.798 -1.132 0.258
season7 -232.007 153.165 -1.515 0.131
season8 -209.839 154.798 -1.356 0.176
season9 -215.827 154.793 -1.394 0.164
season10 -181.642 154.790 -1.173 0.242
season11 -119.718 154.787 -0.773 0.440
season12 14.728 154.786 0.095 0.924

9.2 Moving Average Smoothing

Here we compute the mean of successive smaller sets of numbers of immediate past data. The
period or length (also called span) of the moving average is the number of observations
(including the present one) used for averaging. The general expression for the moving average
𝑀𝑡 at time 𝑡 is

𝑀𝑡 = [𝑋𝑡 + 𝑋𝑡−1 + ... + 𝑋𝑡−𝑁+1]/𝑁
where 𝑋𝑡 is the observation at time 𝑡 and 𝑁 the moving average length. Figure 9.2 shows the
moving average smoothing for the ‘$20 Notes in public hands’ data. It can be noted that the
degree of smoothing is directly related to the length of the moving average (i.e., longer the
length, greater the smoothing).

NZnotes20 <- read_table(
"http://www.massey.ac.nz/~anhsmith/data/20dollar.txt") |>
pull(value) |>
ts(start=1968, frequency=1)

MA.centred <- ma(NZnotes20, 2, centre = TRUE)
MA.noncentred <- ma(NZnotes20, 2, centre = FALSE)

library(forecast)

autoplot(NZnotes20) +
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autolayer(MA.centred, series = "2 y MA centred") +
autolayer(MA.noncentred, series = "2 y MA noncentred", linetype=2)
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Figure 9.2: Centred and Non-centred Moving Averages

When placing the moving averages against time, placing them in the middle time period
is more appropriate. Strictly speaking the moving average must fall at 𝑡 = 1.5, 2.5, 3.5 etc
when the period of the moving average is an even number. Hence we need to smooth again the
moving average smoothed values to place the moving averages at 𝑡 = 2, 3, 4 etc. Figure 9.2 also
compares the centred moving average smoothing and non-centred moving average smoothing
(length 2) for the ‘$20 Notes in public hands’ data. It is easy to see that centring has stopped
the moving averages from drifting below the original series and ‘lined’ them with the original
data.

9.3 Exponential Smoothing

In moving average smoothing all past observations are given equal weight. In exponential
average smoothing, past observations (i.e. as the observations become older) are given expo-
nentially decreasing weights. That is, recent observations are given relatively more weight
than the older observations. Hence the exponential smoothing method becomes a representa-
tive method to produce a smoothed time series. The average computed using exponentially
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decreasing weights is known as the Exponentially Weighted Moving average (EWMA).
This fitted average is also called level because this method does not allow for trends or
seasonality (and everything gets smoothed).

EWMA smoothing begins by setting 𝑆0 to 𝑥1 (usually), where 𝑆 stands for smoothed obser-
vation (or EWMA), and 𝑥 for the observation. The subscript in 𝑥 refers to the time periods
𝑡 = 1, 2, ..., 𝑛. For the second period, 𝑆2 = 𝛼𝑥2 + (1 − 𝛼)𝑥1 and so on. Here the parameter 𝛼 is
called the smoothing constant, the weight given to the current observation. A general formula
is also available to compute the EWMA for any time period 𝑡. Figure 9.3 shows the single
exponential smoothing on the $20 Notes series for 𝛼 = 0.5. Instead of fixing an 𝛼 value such
as 0.5, we may leave it to the software to find an optimum value.

single.exp <- NZnotes20 |> ses(alpha=0.5) |> fitted()

p1 <- autoplot(NZnotes20) +
autolayer(single.exp, series ="alpha=0.5")

single.exp1 <- NZnotes20 |> ses() |> fitted()

p2 <- autoplot(NZnotes20) +
autolayer(single.exp1, series = "optimised alpha")

library(patchwork)

p1/p2
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Figure 9.3: Single exponential smoothing (fits)

The rate at which the effect of older observations on the current EWMA will be dampened
depends on 𝛼, the smoothing constant. Larger the 𝛼 value, faster the dampening effect of
older observations.

A naive choice for the initial value for 𝑆0 (i.e. at the origin) is 𝑥1, the first observation. The
other choices include the average of two or more successive observations, estimating using
regression methods etc. In this course we will not be concerned with the choice of the initial
values very much (and accept the defaults of the R packages).

9.4 Double Exponential Smoothing

Single exponential smoothing is improved to double exponential smoothing to account for
the trend type of variations. This is achieved by introducing a second smoothing constant
say 𝛽. This weighting constant captures linear trends using the successive differences in the
fitted EWMAs. The process of double exponential smoothing is conveniently represented by
the following two equations.

𝑆𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)[𝑆𝑡−1 + 𝑇𝑡−1] (called level equation)

where
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𝑇𝑡 = 𝛽[𝑆𝑡 − 𝑆𝑡−1] + (1 − 𝛽)𝑇𝑡−1 (called trend equation).

The second equation for the trend EWMA gives a weight of 𝛽 to the current differences in the
EWMAs (i.e. 𝑆𝑡 − 𝑆𝑡−1) and the balance weight (1 − 𝛽) to the preceding trend EWMA.

The main or usual EWMA (i.e. 𝑆𝑡) gives a weight of 𝛼 to the current observation and the
balance weight (1 − 𝛼) to the sum of preceding main and trend EWMAs (i.e. 𝑆𝑡−1 + 𝑇𝑡−1). A
naive choice for the initial value for 𝑇0 (i.e. at the origin) is 𝑥2 − 𝑥1, the difference between
the first and the second observations. The other choices include the average of two or more
successive differences, estimating using regression methods etc. In this course we will not be
concerned with the choice of the initial values very much. The smoothing constants 𝛼 and 𝛽
are obtained by non-linear optimisation methods (such as the Marquardt algorithm). In this
course, we will just accept the R outputs as the optimised fits. Figure 9.4 shows the double
exponential smoothing on the $20 Notes series with optimum 𝛼 and 𝛽 (as determined by the
forecast package).

double.exp <- NZnotes20 |> holt() |> fitted()

autoplot(NZnotes20) +
autolayer(double.exp, series = "DEWMA-optimised")
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Figure 9.4: Double exponential smoothing
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9.5 Triple Exponential Smoothing

This approach developed by Holt and Winter (hence the name Holts-Winter (HW)
smoothing) employs a level equation, a trend equation, and a seasonal equation for
smoothing at each time period. Hence three weights, or smoothing parameters are needed.

𝑆𝑡 = 𝛼(𝑋𝑡 − 𝑃𝑡−𝑝) + (1 − 𝛼)[𝑆𝑡−1 + 𝑇𝑡−1] (level equation)
𝑇𝑡 = 𝛽[𝑆𝑡 − 𝑆𝑡−1] + 1 − 𝛽)𝑇𝑡−1 (trend equation)
𝑃𝑡 = 𝜙(𝑋𝑡 − 𝑆𝑡) + (1 − 𝜙)𝑃𝑡−𝑝 (seasonal equation of a given period 𝑝)

The smoothing parameters 𝛼, 𝛽, and 𝜙 are constants and are usually estimated minimising
the MSE. In order to proceed with the triple exponential smoothing, we need at least one
complete season’s data to determine initial estimates of the seasonal indices. For estimating
the trend components, it is preferable to have at least two complete season’s data.

The initial trend is usually estimated using the average differences in the corresponding obser-
vations in two adjacent seasons. The estimating initial values for seasonal components, we use
the averages rather than differences. Regression methods are also employed for estimating the
initial values. In this course, we will not study the estimation methods for initial values in any
detail but will accept computations and optimisation reported in the forecast R package.
Figure 9.5 shows the triple exponential smoothing to the outstanding credit card balances
series.

library(forecast)

trp.exp <- credit.balance |> hw() |> fitted()

autoplot(credit.balance) +
autolayer(trp.exp,

series = "Holt-Winter- optimised")
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Figure 9.5: Triple exponential smoothing

9.6 Assessment of Fit:

Forecast accuracy measures such as MSE are useful for fixing the smoothing parameters such
as the moving average length or the EWMA smoothing constant. We may minimise MSE
(say) to fix a value for the EWMA smoothing constant. This can be done by trial and error
or by nonlinear optimisation methods (such as Marquardt’s procedure).

By the term forecasting, we mean projecting the present time series for future time points.
For example, assume that we used an uncentered two period moving average to smooth the
‘$20 Notes’ time series. The moving average value (non-centred) for 1969 is 18.05. A naive
approach to forecasting will be to use the smoothed value at time (𝑡−1) to forecast for time 𝑡.
Hence the forecasted value (or simply forecast) of $20 bills for 1970 would be 18.05 as against
the actual observed value of 21.76. In the absence of Year 1970 data, the same value 18.05
would be the forecast for 1971 and so on. MAs are not useful for forecasting in general and
hence this average is just employed to fit trends or extract trends when seasonal variation is
absent.

For EWMA Forecasting, the forecast approach is to add an adjustment for the error that
occurred in the last forecast. We again consider ‘$20 Notes’ time series and obtain the EWMA
smoothed values for 𝛼 = 0.4. For the year 1969 (say), the EWMA value is 17.78 as against
the actual value 19.41 giving an error of 19.41- 17.78= 2.72. This error is given a weight of 0.4
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and added to the 1969 forecast (naive estimate) of 16.69 as 16.69 + 0.4 × 2.72 giving a forecast
value of 17.78 for 1970. The term ‘adjustment error’ will refer to 0.4 × 2.72 = 1.088. This
forecast value is also obtained as

Forecast for 1970 = 0.4 × 19.41 + 0.6 × 16.69 = 17.78.

(from the relationship 𝑆𝑡+1 = 𝛼𝑥𝑡+1 + (1 − 𝛼)𝑆𝑡 where the unavailable value 𝑋𝑡+1 is replaced
by the naive estimate 𝑋𝑡). This forecasting approach is also not useful in the presence of trend
etc. Hence only a forecast of one time period ahead is usually done. For forecasting two or
more time periods ahead, methods such as double and triple exponential smoothing are more
useful.

If we perform the double exponential forecasting for some 𝑚 periods ahead from a point at
time 𝑡, the trend part of EWMA, 𝑇𝑡, will be added 𝑚 times to the naive level estimate 𝑆𝑡.
As shown in Figure 9.6, the double exponential smoothing approach provides no nonsense
forecasts compared to the naive single exponential forecasts in the presence of trends. The
fit/forecast quality measures such as the MSE, MAD etc will also be smaller for the double
exponential smoothing in the presence of trends.

holt1 <- holt(credit.balance)
holt2 <- hw(credit.balance)

p0 <- forecast::autoplot(window(credit.balance, start=2012)) +
xlim(2012, 2025) + ylim(4500,7000) + ylab("")

p1 <- p0 + autolayer(holt1, series = "Double exponential")

p2 <- p0 + autolayer(holt2, series = "Triple exponential")

library(patchwork)

p1/p2
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Figure 9.6: Double and triple exponential forecasts for credit balance data

The forecast accuracy measures can also be obtained using the accuracy() function in the
forecast package. This function also give a few other accuracy measures. For the credit card
balances data, we obtain-

bind_cols(
Method = c(

"Double exponential smoothing",
"Triple exponential smoothing"

),
bind_rows(

accuracy(holt1)[,c(2,3,5)],
accuracy(holt2)[,c(2,3,5)]
)

)

# A tibble: 2 x 4
Method RMSE MAE MAPE
<chr> <dbl> <dbl> <dbl>

1 Double exponential smoothing 88.5 51.3 0.993
2 Triple exponential smoothing 72.5 33.5 0.680
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Evidently the triple exponential smoothing fares well for our credit card balances data.

9.7 Intro to Autoregressive Modelling

The concept of stationarity plays in important role for building time series models. In crude
terms, a time series is said to be stationary if the mean and variance do not change over time
(alternatively the same probability law applies over time). In fact stationarity is defined in a
pure mathematical way but we will not worry about this in this course.

A white noise series is defined as a series with a constant mean and variance, and the true
mean and variance remain the same for all 𝑡. Normal random data is an example of white
noise but the normal assumption is not required for a series to be white noise. You can also
intuitively guess that a white noise series is stationary.

A quick collection of EDA displays can be obtained using a single function ggtsdisplay() or
tsdisplay() in R. This display is shown for the white noise series in Figure 9.7.

set.seed(123)
wht.noise <- arima.sim(list(order=c(0,0,0)),500)
ggtsdisplay(wht.noise)
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Figure 9.7: A summary plots for white noise
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Time series modelling is not needed for a series such as this one. The above random series must
be distinguished from a series whose autocorrelations are not decaying to zero or becoming
significant frequently.

A drifting random walk series is defined as

𝑋𝑡 = 𝛿 + 𝑋𝑡−1 + 𝑊𝑡

where 𝛿 is the constant drift, and 𝑊𝑡 is white noise which induces the random walk for the
series. The mean function depends on 𝑡 for this series and hence not stationary. This is not
of concern because we can model the drift and make the residuals stationary. The trick is
to model the difference 𝑋𝑡 − 𝑋𝑡−1 or just use the first lag 𝑋𝑡−1 as a predictor in the usual
regression.

set.seed(123)
rwd <- arima.sim(list(order=c(0,1,0)),500)
ggtsdisplay(rwd)
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Figure 9.8: A summary plots for drifting random walk series

In Figure 9.8, it should also be noted that the ACFs decay to zero which is a good thing when
compared to the case where ACFs are not decaying to zero.
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𝑋𝑡 = 𝛽0 + 𝛽1(sin(2𝜋
12 𝑡) + 𝛽1(cos(2𝜋

12 𝑡) + 𝜖𝑡

The above model introduces a 12-period seasonal pattern using sin and cos functions (which
are periodic). The time series EDA plots for this function is obtained below:

t=1:500
set.seed(123)
Xt=sin(t*2*pi/12)+cos(t*2*pi/12)+rnorm(500)
ggtsdisplay(Xt)
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Figure 9.9: Seasonal series EDA plots

Note the periodical patterns in the EDA plots shown in Figure 9.9. Analysis of a time series
using sine and cosine functions is known as frequency domain approach and is popular in me-
teorology, chemistry and geophysics. Instead of using trigonometric functions, say if indicator
variables are used to model seasonality, we stay within the time domain. The autocovariance
function in the time domain is analogous to the spectral density function in the frequency
domain.

Consider the model
𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜖𝑡
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This model is called the auto-regressive model of order 𝑝 and called the 𝐴𝑅(𝑝) process. Under
this model, we assume that the present value depends linearly on the immediate past values as
well as a random error. Note that this model is very similar to the multiple regression model
where the predictors are just the past values of the series. This 𝐴𝑅(𝑝) series is stationary
if the variance of the terms are finite. When 𝑝 = 1 (the first-order process), the model is
known as a Markov process. The EDA plots for random data from this process is shown in
Figure 9.10. Figure 9.11 shows the 𝐴𝑅(3) process EDA plots. Note that the PACF shows a
pattern matching the parameters set ar= c(0.8, -0.7, .3). The last PACF in an 𝐴𝑅(𝑝)
model accounts the excess autocorrelation at lag 𝑝 that is not accounted for by an 𝐴𝑅(𝑝 − 1)
model.

set.seed(123)
Xt <- arima.sim(list(order=c(1,0,0), ar=.6), n=500)
ggtsdisplay(Xt)
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Figure 9.10: A typical Markov series EDA plots

set.seed(123)
Xt <- arima.sim(list(order=c(3,0,0), ar= c(0.8, -0.7, .3)), n=500)
ggtsdisplay(Xt)
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Figure 9.11: A typical AR(p=3) series EDA plots

The moving average process for errors is defined by the following equation.

𝑋𝑡 = 𝛽0𝑧𝑡 + 𝛽1𝑧𝑡−1 + ⋯ + 𝛽𝑞𝑧𝑡−𝑞

Note that 𝑋𝑡 is modelled with errors 𝑧1, 𝑧2,…, whose means are assumed to be zero and
constant variance. The 𝛽s are coefficients of the model and 𝑞 is the order. The mean of this
𝑀𝐴(𝑞) process is zero but we can always add some mean 𝜇 which will not affect the properties
such as ACFs. The basic idea behind the 𝑀𝐴(𝑞) process is that the current value of the
response is due to variety of current and past unpredictable random events. It is proved that
the moving average process is a stationary process and that the ACFs at lags greater than 𝑞
are zero. Figure 9.12 and Figure 9.13 show the basic EDA plots for the 𝑀𝐴(1) and 𝑀𝐴(3)
processes.

set.seed(123)
Xt <- arima.sim(list(order=c(0,0,1), ma=.6), n=500)
ggtsdisplay(Xt)
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Figure 9.12: EDA plots of a typical MA(1) process

set.seed(123)
Xt <- arima.sim(list(order=c(0,0,3), ma=c(.3, .1, -.4)), n=500)
ggtsdisplay(Xt)
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Figure 9.13: EDA plots of a typical MA(3) process

ARMA Model

The term 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model refers to the following equation that combines both the 𝐴𝑅(𝑝)
and 𝑀𝐴(𝑞) models.

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝛽𝑜𝑧𝑡 + 𝛽1𝑧𝑡−1 + ⋯ + 𝛽𝑞𝑧𝑡−𝑞

It is easy to see that the term 𝜖𝑡 in the 𝐴𝑅(𝑝) model is replaced or expanded with the
𝑀𝐴(𝑞) model. You may wonder why to have such a complicated model. In fact the ARMA
model requires fewer parameters than using just 𝑀𝐴(𝑞) or 𝐴𝑅(𝑝) model. 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model
is a stationary model. Figure 9.14 shows the EDA plots for the simulated series from the
𝐴𝑅𝑀𝐴(2, 2) process; note the constants fixed under the ar and ma parts of the arima.sim
function and compare the ACF and PACF plots.

set.seed(123)
Xt <- arima.sim(list(order=c(2,0,2), ar=c(.5, -.3), ma=c(.3, .1)), n=500)
ggtsdisplay(Xt)
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Figure 9.14: EDA plots of a typical MA(3) process

Fitting ARMA model Fitting an AR model can be done approximately using the multiple
regression approach. If we use the sample mean 𝑋̄ to estimate the mean 𝜇 of the process,
the AR model becomes the multiple regression model with lags as predictors. However we
cannot take the same approach to fitting ARMA models and we need to employ nonlinear
optimisation methods.

After fitting the ARMA model, we perform diagnostics of the fitted model. Here we explore
the residuals of the fitted model for randomness and periodicity. In order to avoid over fitting,
we will also examine the standard errors of the fitted coefficients. The need for transformations
such the logarithm or the square root will also be indicated by the residuals.

If the residuals are found to be nonstationary (often the case), we opt for differencing of the
series. We have briefly seen that differencing can bring stationarity to a drifting process.
Formally, the first difference 𝑋𝑡 − 𝑋𝑡−1 is denoted as ▽𝑋𝑡. If we perform the differencing of
the differences, we obtain ▽2𝑋𝑡 and so on. In order to bring stationarity to residuals, we may
do differencing 𝑑 times. We then fit the model to ▽2𝑋𝑡 instead of 𝑋𝑡. This model is known as
an autoregressive integrated moving average (ARIMA) model and denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞).
The term “integrated” means that the stationary model that was fitted based on the differenced
data has to be summed (or “integrated”) to provide a model for the original data.

The ARIMA model is further generalised to seasonal ARIMA (SARIMA) model. The AR
part for seasons (parameter P), differencing part (D) and the MA part (Q) form part of the
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𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞, 𝑃 , 𝐷, 𝑄). This topic is covered in higher level courses.

Building good ARIMA models of Box and Jenkins [1] generally requires a reasonable amount
of experience compared to building models to cross-section data. In this course you are
expected not to build ARIMA models (no exam questions). But it should not be too
hard to recognise the situations such as seasonality in the data series using EDA tools.

The R package forecast has a convenient function called auto.arima which can quickly fit an
ARIMA model. This is just an initial model which must be improved further. For the credit
balance data, we obtain the following output:

auto.arima(credit.balance)

Series: credit.balance
ARIMA(0,2,4)(0,0,2)[12]

Coefficients:
ma1 ma2 ma3 ma4 sma1 sma2

-0.6271 -0.5941 0.0977 0.1389 0.2602 0.1775
s.e. 0.0608 0.0729 0.0683 0.0636 0.0623 0.0570

sigma^2 = 5817: log likelihood = -1581.39
AIC=3176.78 AICc=3177.2 BIC=3202.1

This package can also generate forecasts easily, see Figure 9.15. This plot also shows the
confidence bands for the forecasts.

fit <- auto.arima(credit.balance)
forecast::autoplot(forecast(fit,h=24))
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Figure 9.15: Forecasts for credit balance series
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